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Preface

This report contains the 1993 annual progress reports of the Research Fellows
and students of the Center for Turbulence Research. In a_ldition to this and the

Summer Program reports, each year several CTR manuscript reports are published

to expedite the dissemination of research findings by the CTR Fellows.
The Fellows of the Center for Turbulence Research are engaged in fundamental

studies of turbulent flows with the objective of advancing the physical understanding

of turbulence and to improve turbulence models for engineering analysis and develop

techniques for turbulence control. The CTR Fellows have a broad range of interests

and expertise; together with the NASA-Ames scientific staff and Stanford faculty
members, they form a stimulating environment devoted to the study of turbulence.

In its seventh year of operation, CTR hosted seventeen resident Postdoctoral Fel-

lows, four Research Associates, and four Senior Research Fellows, and it supported
three doctoral students and six short term visitors. The major portion of Stanford's

doctoral program in turbulence is sponsored by the United States Air Force Office
of Scientific Research and the Office of Naval Research. Many students supported

by these programs also conduct their research at the CTR. This report includes
work only for those students who are directly supported by the CTR.

The first group of reports in this volume are directed towards the theory and

application of active control in turbulent flows. A notable progress in this area

was the development of a systematic mathematical procedure based on the Navier

Stokes equations for flow control. The second and the largest group of reports are
concerned with the prediction of turbulent flows. Last year a significant fraction of

CTR's effort in large eddy simulation and Reynolds averaged turbulence modeling
was focused on the application of models developed at the CTR to complex flows.

We expect this trend to continue. The remaining articles are devoted to turbulent

reacting flows, turbulence physics, experiments, and simulations. In particular, a

new set of experiments addressing the question of local isotropy in high Reynolds
number strained turbulence was conducted in the 80x120 tunnel at Ames. It is be-

coming evident that this and perhaps other similar large scale national facilities can
effectively be used for fundamental flow research. In the last two years, colleagues
from other universities were also able to participate in these unique experiments.

The CTR roster for 1993 is provided in the Appendix. Also listed are the members

of the Advisory Committee which meets annually to review the Center's program

and the Steering Committee which acts on Fellowship applications.
It is a pleasure to thank Debra Spinks, the Center's Administrative Assistant, for

her skillful compilation of this report.
Parviz Moin

William C. Reynolds
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Optimal feedback control of turbulent channel flow

By Thomas Bewley, Haecheon Choi, Roger Temam 1, AND Parviz Moin

Feedback control equations have been developed and tested for computing wall-

normal control velocities to control turbulent flow in a channel with the objective of

reducing drag. The technique used is the minimization of a "cost functional" which

is constructed to represent some balance of the drag integrated over the wall and
the net control effort. A distribution of wall velocities is found which minimizes this

cost functional some time shortly in the future based on current observations of the

flow near the wall. Preliminary direct numerical simulations of the scheme applied

to turbulent channel flow indicates it provides approximately 17% drag reduction.

The mechanism apparent when the scheme is applied to a simplified flow situation
is also discussed.

1. Motivation and objectives

It is the goal of this project to study methods to counteract near-wall vortical

structures in turbulent boundary layer flow using an active control system in an

effort to reduce drag. From this study, we hope to better understand the physics of

drag producing events and the sensitivity of boundary layer flow to control. As a

more far-reaching goal, we would like to better understand how to develop control

equations for general flow control problems, utilizing the equations governing fluid

flow to achieve performance that is in some sense optimal for a given situation.

With a well-chosen scheme using wall control only, it has been shown that a

turbulent flow may be smoothed out in a near-wall region, and the drag may be

substantially reduced. This scheme applies small amounts of wall-normal blowing

and suction through the computational equivalent of holes drilled in the wall. Pre-

vious ad hoc schemes by Choi et al. (1992) have reduced the drag by as nmch as

20% by countering the vertical velocity slightly above the wall with an equal but

opposite control velocity at the wall. The objective of this work is to derive more

effective schemes by applying optimal control theory, utilizing the equations of mo-

tion of the fluid to reveal the dominant physics of the control problem and the most

efficient distribution of the control energy. This work is an outgrowth of the work

done by Choiet al. (1993), where optimal control theory was applied to the stochas-

tic Burgers equation. Here, we apply the theory to the Navier-Stokes equations,

which necessitates a more involved treatment of the equations and more extensive

computer resources. The scheme discussed in this report depends on measurements

of flow velocities above the wall -- this is not feasible in a practical implementa-

tion. The scheme will later be reduced to a more practical one involving only flow

quantities which are most easily measured in an experimental rig.

1 Universit6 de Paris-Sud (FRANCE) and Indiana University (LISA)
,4
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The model problem we study in this work is the turbulent flow inside a small

segment of a fully developed turbulent channel (i. e. flow between two parallel walls,
far from the inlet). This flow is governed by the same vortical structures as turbulent

boundary layer flow in the near-wall region.

Thus, the problem under consideration is a turbulent channel flow with no-slip
walls and wall-normal control velocities ¢. Control will be applied to this flow in

order to decrease the drag integrated over the walls at the expense of some measure

of the net control effort. A feedback control algorithm has been developed which

minimizes a "cost functional" constructed to represent this balance of the drag and

the control effort. This method is introduced in Section 2. The control equations
have been coded and tested in a direct numerical simulation of turbulent channel

flow. Section 3 discusses preliminary results of these calculations.

2. Formulation

_.I State equation (Navier-Stokes equation)

As described above, the problem under consideration is a constant-flux turbulent

channel flow with no-slip walls and wall-normal control velocities ¢. This problem

is governed by the unsteady, incompressible Navier-Stokes equation, the continuity
equation, and a constant flux integral constraint equation inside the domain f_ and

appropriate boundary conditions on the walls w (periodic conditions are implied on

the remainder of the boundary of the domain r):

Oui 0 Op 1 0 0
--_ + _w--ujui = --- + uiox j Ox i Re Ox j Ox j

Oui
--=0 in f_
Oxi

/fflul dxl dx2 dx3 =C

(la)

(lb/

on walls, (2)

where xl x2 is the wall-normal direction, x3 is the
spanwise direction, ui are the corresponding velocities, and p is the pressure. The

constants in the problem are C (a measure of the flux in the channel) and Re (the
Reynolds number).

2._ Optimal control of state equation

The goal of controlling the channel flow is to minimize the drag on a section of
wall with area A over a period of time T using the least amount of control effort

possible. The relevant quantities of interest are thus the time averaged drag

l foTffwOUl£) = A--'T _ dxl dx3 dt (3)

Ul=0

U2_

U3 .---:.0

is the streamwise direction,
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(where n is a unit vector in the inward wall normal direction) and a term represent-

ing the expense of the control. The latter term may be taken to be the integral of
the magnitude of the power input, which may be written

A--_ [¢(p+ p¢2/2)[ dx, ax3_t, (4_)

In addition, depending on the physical mechanism used to provide the control veloc-

ities, the rate of change of the control hardware settings might be another important

expense (for instance, representing the expense involve in changing the settings of
control valves in the system):

E,2 = A----T dxl dx3 dr. (4b)

A physically appropriate cost functional for this problem, then, balances the expense
of the input versus the drag:

,7(¢) = el/_1+6E2 + D, (5)

where gl and g2 are appropriate weighting factors. We could proceed from this

point to attempt to construct a control procedure designed to minimize this cost

functional. A mathematically more simple cost functional for the purpose of control

theory (for reasons which will become evident as the control equations are derived)

is quadratic in ¢. Physically, this represents the integral of the magnitude of the

kinetic energy per unit mass input to the system, and may be written

I/£g 1 T ¢2 dzl dxs at + _ --_ dxl dx3 dr. (6)J(¢)-- 2 AT

It will be seen later that, in most problems that we consider, the expense terms are

much less significant than the drag terms (in other words, the control is relatively
cheap). The use of other expense terms does not cause much additional complexity
or insight into the method.

The optimal control procedure considered, then, involves reducing the cost func-

tional (6) for some period of time T. This method is described in Abergel and

Temam (1990) in a related situation and is also discussed in Lions (1969). How-
ever, this is a prohibitively expensive procedure for present computational resources

because it involves storage and manipulation of several three-dimensional fields over

the entire time period under consideration. The complexity of such an algorithm is
discussed further in Choiet al. (1993).

We therefore resort to a suboptimal control procedure (Choi et al. 1993). In this

method, the state equation is discretized in time, then a control procedure is applied
to reduce an instantaneous version of the cost functional (6)

'//°-,j(¢) = _ ¢2dz, ax, + -_ _ dx, d_', (Z)
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at each time step.

By applying the control at each time step, the algorithm gives the control which
minimizes the cost functional over some short time interval. Note, however, that

this method does not look ahead to anticipate further development of the flow, and

thus the solution by this method does not necessarily correspond to the solution by

the optimal control method. Thus, posing the problem in this suboptimal form is

another level of approximation to the physical problem of interest.

The differences in complexity between the optimal and suboptimal schemes de-

scribed above may be realized by drawing an analogy to a computer algorithm to

play chess. A suboptimal chess program looks ahead one step to determine the
move that leaves as good a position on the board as possible. Similarly, a subop-
timal turbulence control scheme looks ahead one time step to determine the set

of control velocities that leaves as good (i.e. low) a value of the cost functional as

possible at the next time step. An optimal chess program, on the other hand, in-

vestigates all possible developments of the game a certain number of steps into the
future (knowing how the other player may respond), and then moves in the direction
that leads to the best final position on the board. Similarly, an optimal turbulence

control scheme investigates all possible developments of the flow a certain amount

of time into the future (knowing approximately how the flow will respond), and

then applies the set of control velocities that leads to the best (i.e. lowest) time-

averaged cost functional. Such a method requires significantly more resources than

the suboptimal method.

_.8 Time discretization of sta_e equation

The suboptimal control procedure introduced above is now applied to the state

equation (1). To do this, we discretize (1) in time, then apply a feedback control

algorithm to modify the flow at the next time step. A consistent approach is to
use a second order Crank-Nicolson method (implicit) on all terms. The momentum

equation (la) thus takes the form:

(s)

where a superscript n indicates the value at time step n.

It is now useful to put the time discretized form of the entire state equation

governing the flow in the domain into the form

/C" + T_'_-I = O, (9a)

where K:n contains all the terms which in some way depend on the state variables
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from the current time step, and 7_"-1 contains the remaining terms:

ou;

f12 f f f u_ dxl dx2 dx3

JJJa

•_n--1 :

in f_

in fl (9b)

(9c)

In the above equation, /31 = At/2Re, j32 = At�2, dP/dxl is the mean pressure

gradient in the xl direction (adjusted at each time step to provide constant mass
flux), and p' accounts for the pressure variations within the domain (periodic in xx

and xa). Note that (lb) and (lc) have been multiplied by constants to obtain (9).
Associated with this problem are the boundary conditions B:

BI:UI:0

B2 = u2 = ¢

B3 =u3 =0.

(10)

The "flow problem", which will hereafter be denoted d, is taken to refer to the

differential equation (9) together with the boundary conditions (10).

2.4 Suboptimal control of state equation

In this section and the next, we develop a method to solve for the gradient of

the cost functional ,7" and with this a control procedure based on this gradient

information to minimize fl at each time step.

Consider the Fr_chet differential (Vainberg, 1964) of the cost functional fl in (7):

VJ(¢) _, J(¢ + ,¢) - y(¢)
T = lim

,-0 (11)

= -A -A _n \:De [p dx, dx3.

The gradient of the functional ff with respect to the control distribution ¢ may be
extracted from this equation by expressing the last term on the RHS in terms of an
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inner product on ¢. It is for this reason that we now formulate what we shall call

the "differential problem".

Define O using a Fr6chet differential such that

I)V(_b) Jz =- lim U(¢ + e¢) - U(¢) (12)
O = D( ,--.0 e '

where ¢ is some arbitrary or "test" distribution of control velocities. Thus, O"

is a differential state representing the sensitivity of the state U n to control for a
particular control distribution (n applied over the time duration (tn--l,tn]. The

differential O is decomposed into components in a fashion similar to the state U(¢):

u(¢)= , e= / p( i,x2,x3)l-
\ dP/dxl \ .k /

The equations governing the differential state O" follow directly by taking the
Frdchet differential of the state equation (9) and its boundary conditions (10). Note

that the term T_n-1 in (9) does not depend on _n and thus makes no contribution.
The contribution from the term K:" is linear and may be written

where

A"O _ = 0, (13a)

( ff_Pz, _ Ou, OOiOi - #10zj Ozj
in 12

_ OOj
AO = -/12 _xj in 12 (13b)

#2//fo 01 dxl dx2 dx3.

The boundary conditions _1, from (10), are

/}l = 01 = 0

1}2 = 02 = ¢ (14)

B3 =03 =0.

The "differential problem", which will hereafter be denoted .J, is taken to refer to

the differential equation (13) together with the boundary conditions (14).

Consider again the Frdchet differential of the cost functional J" in (11):

_:(_)_=' J/w 1 //. O01D( -_ ¢ [#dxl dx3 + _ "_n dx, dx3. (15)

The gradient of the functional ,.7 with respect to the control distribution O may be

extracted from this equation by expressing the integral of 081/On in terms of an
inner product on ¢. This may be done by solving the differential problem _:], as is
done below.
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IL5 Solution of differential problem .e/ by adjoint method

An "adjoint problem" is now formulated which may be used to bypass direct
solution of the differential problem _7 itself.

Define an adjoint operator A* using the equation

<AO,_>=<O,A*q>+ b, (16)

where A (which depends on U) is defined in equation (13b), the boundary conditions

on O are given in equation (14), and an adjoint state @ has been defined in a fashion
similar to U and O:

The adjoint operator is formed by moving all of the derivatives in the inner product

(the integral over the volume of the product of the two terms, denoted < -,. >)
from the differential O to the adjoint @. It is a straightforward exercise to write

out the volume integrals corresponding to the LHS of (16) and then to rearrange

this expression into the form of integrals corresponding to the RHS of (16) using
integration by parts. From this is deduced A* and the condition at the boundary

resulting from the wall terms, which are all placed into the expression for b:

b =<AO,@ > - <O,A*_ >. (17)

Through equation (13a), the first term on the RHS of equation (17) is zero. If we
form a similar homogeneous _djoint differential equation for the adjoint

A*@ = 0, (18)

with boundary conditions as yet undetermined, then equation (17) reduces to

b = O. (19)

Using the method described above, it is easy to show that

0 0 07r • Ou t _ usoxj +32( + + 00,)

A*tI/ _-

and

_2//_¢1 dxl dx2 dx3

I/w( 001 (_03b = /_1 -_-n (I/'1) -- 32 P/12(_'2) "_ _l -_'n (_)3)

in f/

in fl (20)

(21)
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(Note by comparison of (20) with (13b) that the operator A is not self-adjoint due

to the effect of the convective terms of the momentum equation.) These adjoint
equations may be exploited to solve the differential problem d.

We now formulate an "adjoint problem", which will hereafter be denoted d °,

defining an adjoint state • with the homogeneous differential equation (18) and

with accompanying boundary conditions B ° as yet undefined. Note by the above
discussion that one of the by-products of the formulation of this problem is the

relation at the boundary given by (21). We are now at liberty to choose boundary

conditions for the adjoint problem such that this relation is useful -- it is exactly
for this reason that the formulation of an adjoint problem is considered. With this

in mind, we may choose the boundary conditions B" as

n; = ¢1 = 1

B_ = _b2 = 0 (22)

nj = ¢3 = 0.

Using these boundary conditions and the continuity equation for the adjoint velocity,

equation (21) reduces to

dxl dx3 = -n2

To compute the RHS, we must solve the adjoint problem .c/*. This is done numeri-

cally and must be repeated at each time step as A* changes as the flow U develops
with time.

The differential of the cost functional (11) may be rewritten using (23) as

' ffo n2Re //w Cdxldx3 (24)_-_ _ _ ¢¢dxl dx3 A rr ,

where 7r is the adjoint pressure on the wall. Finally, the desired gradient of the cost

functional ,.7"may be extracted (Vainberg, 1964):

Dfl(¢) g n2 Re_ ¢ (25)
:De A A

A feedback control procedure using a simple gradient algorithm at each time step

may now be proposed such that

¢,,k+, _ ¢,,k = _/_ , (26)
De

where superscript n indicates the time step as before and superscript k indicates

art iteration step at that particular time step. This algorithm attempts to update

¢ in the direction opposite to the local direction of increase of L7. For fixed n as
k ---) c_ with sufficiently small/l, this gradient algorithm should converge to some

local minimum of 27 over the control space ¢ if the approximation of Z3ff/T)¢ is
sufficiently accurate. Note, however, that as the time step n advauces, 27 will not

necessarily decrease (Choi et al. 1993).
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3. Accomplishments and future work

3.1 Elementary dra 9 reducin 9 mechanisms

Choi et al. (1992) found that by applying a control velocity equal and opposite to
the vertical velocity at y+ = 10, a drag reduction of nearly 20% could be achieved.

Vertical transport of streamwise momentum in the near-wall region (primarily due

to longitudinal vorticity) produces "sweep" events and thus local regions of very
high drag. Applying a countering control velocity tends to reduce this effect. A

related mechanism described by Lumley (1993) further explains these results; con-

trol applied to reduce the spinning of the near-wall vortices reduces their energy,

stabilizing them in space and thereby reducing the "bursting" frequency, which also
tends to reduce the drag.

In the tansverse plane, countering the vertical velocity above the wall corresponds

to a control which de-spins the near-wall vortices, as shown in Figure 1. This process
leads to the removal of fluctuations in the near-wall region, which diminishes the

mixing capability of the turbulence and therefore reduces drag. This type of control

corresponds to blowing where the drag is high, which decreases the high velocity

gradients at the wall and thus smooths out the flow in the near-wall region, as
shown in Figure 2.

suction blowing

FIGURE 1. Stabilization mechanism in cross flow plane. The effect of the control

velocities shown is to de-spin the near-wall vortex, reducing momentum transport
near the wall.

7U_
suction blowing

FIGURE 2. High drag is decreased by blowing at the expense of suction in the

regions of low drag, resulting in a net smoothing of the near-wall velocity profiles.
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Figure 3 shows the application of the suboptimal control scheme to a simple flow

configuration of longitudinal vortices embedded in an initially parabohc flow. A

cross flow plane is shown. In regions below downward moving fluid (sweep events)

the streamwise (into the page) drag is higher and blowing is applied. In regions

below upward moving fluid (ejection events), the streamwise drag is lower and

suction is applied. The overall control distribution from the suboptimal scheme is

in a sense that acts to de-spin the near-wall vorticity, and thus acts in accordance

with mechanisms described above.

tt _ tie1

Control velocities I l I 1 I I ] ] l

ill' 'lti
FIGURE 3. Optimal control scheme applied to longitudinal vortices. Interior

vectors are cross flow velocities and contours are of streamwise velocity, indicating

a sweep event between two near-wall vortices and ejection events outside of them.

Control velocities shown on the wall (not to scale) indicates blowing at the sweep

event and suction at the ejection events.

The adjoint analysis utilizes all the information present in the near-wall region to

extract the sensitivity of the instantaneous drag to the variation of the control. This

scheme may be reduced to an approximate one relying only on wall information by

approximating the near-wall velocities using a Taylor's series extrapolation of the

velocity gradients at the wall. The correlation between the full adjoint analysis and

approximations of the adjoint problem using only information available at the wall

is still being investigated; preliminary results indicate that the performance is not

severely degraded by this approximation.
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3._ Suboptimal control of turbulent channel flow

The scheme introduced in Section 2 was tested by applying it to a direct numerical

simulation of turbulent channel flow. A 17% drag reduction was seen as compared

to a flow with no control. Results are plotted in Figure 4. This calculation was
done in a flow with Re_ = 100 based on the friction velocity and the channel half

width using a 32x65x32 grid and the spectral method of Kim et al. 1987. Although

these results should be considered preliminary, they are quite promising.

t_

140 i

i,,q

I _' ._: ,",i : .

1911..... :a........................'_...;.._..............._,.-..".............._.......................................r...........................................t........................................

100 .....

9ol ..........._..........................j..i...........:',,,.¢......................i................................................................................i..........................................
/ \ /] ] i
I \ / ] i i

so1..................................!............................................i......................................................................................!............................................
0 10 20 30 40 50

time

FIGURE 4. Performance of suboptimal scheme compared to no control and the

scheme of Choi et al. (1992). Parameters for suboptimal scheme are p = 0.01,

l = 10, T + = 1. Legend: -- suboptimal scheme, ........ ¢ = -vl_+=10 , ....
no control.

3.3 Future work

At present, the drag reduction obtained using a suboptimal control scheme is

still slightly less than the drag reduction obtained using the ad hoc scheme of Choi

et al. (1992), as shown in Figure 4. It is hoped that by further variation of the

parameters and careful study of the numerical issues of the adjoint problem, the
result using the suboptimal fornmlation may be significantly improved. We expect

that, using the suboptimal method, a significant improvement is possible over all

ad hoc schemes, as the suboptimal scheme uses the entire flow information in the
near-wall region and is rigorously based. Also, work is currently in progress with

Dr. Chris Hill to reduce the suboptimal control scheme to one which depends on

wall information only. Preliminary results of this work are also quite promising --

a discussion of this project is included in the next report in this volume.
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Drag reduction at a plane wall

By D. C. Hill

1. Motivation and objectives

The reduction of the turbulent drag arising from flow over a wall is a major

technological issue. Over the years, many schemes have been proposed to reduce

turbulent drag (large eddy break-up devices, compliant walls, polymer addition,
riblets etc.), with varied rates of success. The use of riblets, for example, can

lead to about a 7% reduction in drag. The use of computational and theoretical

methods has emerged recently as an effective tool for understanding new aspects of

the physics of drag reduction.

Abergel & Temam (1990) describe how theoretical optimal control schemes can

be developed for turbulent flow fields. The formulations are highly idealized and

cannot be implemented even computationally due to a requirement for prohibitively
large data storage and computations. The problem lies in the need to have perfect

knowledge of the flow field and its history in order to achieve the best drag reduction

possible.

The so-called sub-optimal scheme (Choi et al. 1993) has more modest objectives.
A distribution of control forces is derived based on the instantaneous state of the

system, thereby eliminating the need to retain and investigate the entire history.

The procedure has been shown to work well for the one-dimensional Burgers equa-
tion, with both distributed and boundary control. Encouraged by the success of this

approach, Bewley et al. have pursued the application of the sub-optimal scheme for

channel flow. A detailed description of the method and their results is reported in
this volume of the annual research briefs.

The objective of the present work is to determine by analytical means how drag on

a plane wall may be modified favorably using a minimal amount of flow information
- preferably only information at the wall. What quantities should be measured?
How should that information be assimilated in order to arrive at effective control?

As a prototypical problem, we consider incompressible, viscous flow, governed by

the Navier-Stokes equations, past a plane wall at which the no-slip condition has
been modified. The streamwise and spanwise velocity components are required to

be zero, but the normal component is to be specified according to some control

law. The challenge is to choose the wall-normal velocity component based on flow

conditions at the wall so that the mean drag is as small as possible. There can be no

net mass flux through the wall, and the total available control energy is constrained.

A turbulent flow is highly unsteady and has detailed spatial structure. The mean

drag on the wall is the integral over the wall of the local shear forces exerted by the
fluid, which is then averaged in time; it is a "macroscopic" property of the flow. It

is not obvious how unsteady boundary control is to be applied in order to modify

the mean flow most effectively, especially in view of the non- self-adjoint nature of
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the governing equations. We pursue an approximate analytical solution to the sub-

optimal scheme.

2. Accomplishments

The main accomplishment of this project has been the finding of an approximate

solution to the sub-optimal problem, which requires only wall information to define

a control law. In a preliminary direct simulation, this law leads to a drag reduction
of the order of 15%.

The sub-optimal law is developed by first solving what will be termed a locally-
optimal problem (the optimal drag reduction problem on a very short time interval)

and combining that solution with a gradient algorithm.

12.1 The locally-optimal problem

The mean drag is found by averaging the instantaneous drag over a long time
interval. In order to achieve a formally optimal reduction in the mean drag, a vast

quantity of flow information must be employed. For what I will call the locally-

optimal problem, the time interval, T, over which the average is made is taken
to be very small (T << 1). This has the highly desirable effect that only flow

information near the wall is required in order to investigate how the flow can be

modified efficiently. It has the further advantage that the problem can be solved

analytically, at least to a good approximation (the error is O(T 1/2 )).

Let "D(t) denote the total drag on the wall lying in the xz-plane, -L < x, z < L,
averaged over the short time interval t to t+T. Let _(x, z, T) be the normal velocity

at the wall applied during that time interval. The first variation of D with respect

to changes in • is

-- - dx dz P(z,z,T) _, (1)
4L2T L L

where /5(x, z,T) depends upon the instantaneous state of the flow. The field /5

can be found by solving a carefully-formulated adjoint problem. Only a cursory

description of the solution procedure will be given here.

The adjoint problem requires the solution of an initial boundary value problem,
in which the solution is marched backwards in time (Abergel & Temam 1990) from

t + T to t. The initial stage of development is the only portion of the solution which

need be found. The quantity/5 is the integral over the time interval It, t + T] of the

time- evolving adjoint wall pressure.

As a first step, a reduced adjoint problem is formulated and solved. In this case,
only the mean flow is used in the adjoint governing equations, with the consequence

that the problem reduces to a one-dimensional diffusion problem whose solution can
be written as an error function. This adjoint solution defines an envelope growing

away from the boundary as time evolves backwards.
To solve the adjoint problem fully, a correction must be added to this solution,

and consequently a _econd adjoint problem is formulated. This second problem

now involves the unsteady portion of the turbulent flow field. In order to obtain
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a tractable solution, the mean flow is assumed to be uniform near the wall (the

mean flow does not appear in the solution at the order of approximation used).
"Higher order" convection effects are also ignored. The most important aspect of

this problem, however, is that the second problem is "forced" by a combination
of the solution to the reduced problem and the unsteady flow field. The reduced

problem defines an envelope close to the wall beyond which events are insignificant.
Thus only unsteady events close to the wall need be considered.

The near-wall unsteady flow field is modeled with a spanwise velocity growing

linearly, and normal velocity growing quadratically, with normal distance from the

wall. The streamwise component follows from continuity. The adjoint pressure at

the wall is then determined for small times. The adjoint pressure represents how

sensitive the drag is to changes in the wall blowing, _, for a given wall blowing
distribution and near-wall flow field. The solution collapses in such a way that only

the control distribution, _, and the local wall shear, (Ou/ay)uffio , are required to
define/5.

Defining the Fourier Transform of some f(x, z) by

/_'/:](a, _) ---- dx dzf(x, z)e -'(a'+#') , (2)

we find

where

off
b(., z,r) A++ +o(:), (3)

"')T[ 1 - 4_''/-_--1 ?_R'A---'_7 -3-V_-R]' B-- _/= V/_+_ 2, (4)

and R is the Reynolds number. The quantity (Ofi/Oy)y=O is the Fourier Transform
of the local shear at the wall.

_._ The sub-optimal problem using wall information only

This solution (3, 4) for the adjoint pressure is employed in a direct numerical sim-

ulation to define a blowing/suction distribution based purely on wall information.

If the superscript denotes the flow conditions at the nth time step, then the control
distribution at the (n -k 1)th time step is

¢"+_ = ,_"- .(t4,"- M'), (5)

(see Bewley et al. 1993) or in terms of transformed quantities

_,,,+x = _'"[1 - pg + pRa] + pRB(--_---] . (6)
\ Oy I y----O

This law is implemented in the same code as that used by Bewley et al. The reader
is referred to that review for details of the numerics. The parameters used are

R = 100, T = 0.01, p = 0.2, g = 0.5. (7)
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FIGURE 1. The drag on the wall as a function of time for four separate configu-
rations. Curve 1: No control. Curve 2: Analytical scheme, Equation (6). Curve 3:

Computed sub- optimal scheme. Curve 4: Scheme of Choi et al. (1993).

The history of the instantaneous drag on the wall as a function of time is shown

in Figure I for the case of no control (curve 1), the analytical law given by equation

(6) which uses only wall information (curve 2), the law based on sub-optimal com-
putation of Bewley (curve 3), and the ad hoe scheme of Choi et al. (1993) (curve

4). Note that the present analytical scheme is the only one which employs only wall
information.

The present rule leads to a drag reduction of the order of 15%. The performance

is only slightly degraded from the direct computation of the sub-optimal law, which

makes use of flow information throughout the entire domain.

3. Future work

It is clear that even with a relatively simple analysis of the adjoint equations,

useful control laws can be derived. The effect of mean shear will be included in the

adjoint problem. This will account for more complex physical processes including
vortex tilting and stretching near the wall. Can such dynamics be exploited to

improve drag reduction? This remains an open question.

Using the present approach, is it possible to define the dynamic properties (cre-
ated by active or passive means) which a surface must have in order to reduce the

drag which it experiences? What are those properties? These intriguing questions

bear further investigation.
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Boundary layer receptivity and control

By D. C. Hill

1. Motivation and objectives

Receptivity processes initiate natural instabilities in a boundary layer. The in-

stabilities grow and eventually break down to turbulence. Consequently, receptivity
questions are a critical element of the analysis of the transition process. Success

in modeling the physics of receptivity processes thus has a direct bearing on tech-

nological issues of drag reduction. The means by which transitional flows can be

controlled is also a major concern: questions of control are tied inevitably to those
of receptivity.

Adjoint systems provide a highly effective mathematical method for approaching
many of the questions associated with both receptivity and control. The reader

is referred to Hill (1993) for a detailed description of their use in the receptivity
context. The long term objective of this project is to develop adjoint methods to

handle increasingly complex receptivity questions, and to find systematic procedures
for deducing effective control strategies.

The most elementary receptivity problem is that in which a parallel boundary
layer is forced by time-harmonic sources of various types. The characteristics of

the response to such forcing form the building blocks for more complex receptivity

mechanisms. The first objective of this year's research effort was to investigate how

a parallel Blasius boundary layer responds to general direct forcing.
Acoustic disturbances in the freestream can be scattered by flow non-uniformities

to produce Tollmien-Schlichting waves. For example, scattering by surface rough-

ness is known to provide an efficient receptivity path. This problem has been
investigated previously in a number of different ways. The present effort is directed

towards finding a solution by a simple adjoint analysis, because adjoint methods
can be extended to more complex problems.

In practice, flows are non-parallel and often three-dimensional. Compressibility
may also be significant in some cases. How are receptivity characteristics to be

found for such flows? Recent developments in the use of Parabolised Stability

Equations (PSE) offer a promising possibility. By formulating and solving a set

of adjoint parabolised equations, we have developed a method for mapping the
efficiency with which external forcing excites the three-dimensional motions of a

non-parallel boundary layer. The method makes use of the same computationally

efficient formulation that makes the PSE currently so appealing.

In the area of flow control, adjoint systems offer a powerful insight into the effect

of control forces (Hill 1992). One of the simplest control strategies for boundary
layers involves the application of localized mean wall suction. Why does it work

so well? The adjoint method reveals a very simple flow analogy and a concise
description of the effect of mean localized suction.
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2. Accomplishments

There are four areas where progress has been made. Firstly, the response of a

two-dimensional incompressible parallel (Blasius) boundary layer to direct forcing

has been investigated. This defines the elementary receptivity characteristics of a

boundary layer. Secondly, a variety of natural forcing problems have been solved

in which a scattering agent, such as surface roughness, couples freestream acoustic

waves to Tollmien-Schlichting waves. Direct forcing of a non- parallel boundary layer
is the third topic: here the adjoint to the Parabolised Stability Equations (PSE)

is employed to deal in a computationally efficient manner with the non- parallel

aspects of the problem. Finally, in the area of flow control, a new perspective is
offered on the controlling effect of localized mean wall suction.

2.1 Direct forcing of the Blasiu_ boundary layer

In last year's annual research brief, it was reported that the eigensolutions of

the adjoint Orr-Sommerfeld equation, when suitably normalized, provide a detailed

description of the response of a boundary layer to direct forcing. The characteristics
of the adjoint to the Tollmien- Schlichting wave have been investigated, thereby

developing a picture of the elementary processes by which Tollmien- Schlichting

waves are produced most effectively. Software has been developed to determine the
necessary normalized eigensolution of the adjoint Orr-Sommerfeld equation.

The most significant features of the adjoint eigensolution, and consequently the

physical properties of the boundary layer when subjected to direct time-harmonic

forcing (i.e. an external source), are summarized as follows:

1. Over a wide range of frequencies and Reynolds numbers, the adjoint stream func-

tion corresponding to the ToUmien-Schlichting eigensolution has a simple maximum,
and far from the wall, it decays exponentially.

2. The boundary layer is most sensitive to streamwise forcing (a momentum source)

in the vicinity of the critical layer -- the height above the wall at which the flow

speed and the phase speed of the Tollmien-Schlichting wave coincide. The most
sensitive v-location is shown in Figure 1 as a function of Reynolds number R =

_/v, and frequency f = 27rf*v/U_. Here, L is the distance from the leading
edge of the plate, Uo_ is the flow speed at infinity, 1, is the viscosity, and f* is the
frequency in Hertz. The solid line indicates the height above the wall at which

streamwise forcing is most effective (the location of the maximum of the adjoint

streamwise velocity component). The dashed line defines the position of the critical

layer.

3. Forcing in the wall-normal direction is much less effective than forcing in the
streamwise direction.

4. At the wall, normal motions create Tollmien-Schlichting waves much more effec-

tively than do streamwise motions.

5. The amplification of the ToUmien-Schlichting waves as they travel through the

unstable region dictates that forcing at streanlwise positions close to the lower

branch leads to the strongest response.



Receptivity and control 23

1.4

a_

1.2

1.0

0.8

0.6

"""" 25

J

o  6oo 26oo 25oo

R

FIGURE 1. Height above wall at which a Blasius boundary layer is most sensitive to
direct streamwise forcing, as a function of Reynolds number, for various frequencies

f x 106. Dashed lines define the location of the corresponding critical layer.

Detailed results are reported in Hill (1993).

_._ Natural forcing of the Blasius boundarl./ layer

Sound waves in the free stream can be scattered strongly into Tollmien- Schlicht-

ing waves if there is even a weak mean flow distortion containing lengthscales com-

mensurate with those of the Tollmien-Schlichting waves. The flow distortion might

be caused typically by surface roughness or by mean suction at the wall.

The 'natural response' problem in which a small surface roughness element acts as

a scattering agent has been investigated by several researchers. Goldstein (1983) and
Ruban (1985) used triple-deck theory to analyze the process in tile infinite Reynolds

number asymptotic limit. Crouch (1992) and Choudhari & Streett (1992) provide
a solution of the incompressible problem at finite Reynolds number. The solutions

indicate that the amplitude of the Tollmien-Schlichting wave that is produced by

this mechanism is given by the product of an efficiency factor, a geometry factor,

and the amplitude of the acoustic wave. The efficiency factor is a complex constant

depending on the frequency and Reynolds number, and the geometry factor is the

Fourier transform at the Tollmien-Schlichting wavelength of the roughness shape.
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In the absence of any roughness, there is a profile U(y) on top of which is super-

imposed an unsteady motion

_(r,t) = u(y)e-i_, where u(y) = I -e -C_al2)'/'(1-1)U. (1)

The planar fluctuations represent a freestream acoustic wave of unit amplitude

which has a Stoke's wave signature close to the plate. The frequency w is defined

as f/R, and a is the TS waveumber at that frequency and Reynolds number.

The roughness modifies the mean flow, and the interaction of the Stoke's wave

with this mean flow distortion produces a TS-wave. It is assumed that, far from

the roughness patch, the flow field recovers sufficiently quickly that the scattering

takes place in an interaction zone in the vicinity of the roughness.

The efficiency factor for the scattering process is found by examining the solution

to the following inhomogeneous adjoint problem for the stream function _(V):

_ 2iadU d_' 1 d2 a2)2_ 2iafi___o2o o_
d_o,,,,

dy '

=--d_ =0, ony=0, and asy---,oo,
dy

(2)

(3)

where (fia,_ + _:aw_)e -it_'*-''t) is the normalized adjoint eigensolution correspond-

ing to the TS-wave.
The solution _ has some useful properties. The amplitude of the instability

induced by the scattering of the freestream disturbance is

A h(a) , where h(a) = h(x)e-ia*dx (4)
o_

and the efficiency factor

A = --R\dy dy 2 + dy -_y ]y=o" (5)

The equations (2, 3) have been solved numerically, and A ewluated. The results

are identical with those of Crouch (1992) and Cougar & Streett (1992).

The solution to (2, 3) can also be used directly in the configuration in which mean
suction at the wall acts as the scattering agent. Consider a velocity distribution

Vs(x ) representing a suction/blowing distribution on the plate. The amplitude of

the Tollmien-Schlichting wave is

1 d3_ 1 d2_'^ /__ooV_(x)e_i_,,dx"iaR dy a _) + R d--fix)v=0"
(6)
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Surface admittance is defined as the ratio at the wall of the unsteady normal

velocity to the unsteady pressure, and thus can be used to represent how the surface

responds dynamically to unsteady pressures. Since there is no distortion of the

mean flow, in this case the solution _ is not employed. Suppose that there are

spatially-uniform fluctuations poe -_t in the pressure field. If flw(x) is the surface

admittance, a ToUmien-Schlichting wave of amplitude

£p0 (7)

will be induced. The adjoint pressure at the wall, /5°,,(0), associated with the

normalized adjoint eigensolution in this case defines the efficiency factor for the

scattering of freestream pressure fluctuations into Tollmien-Schlichting waves.

_.3 Direct forcing of non-parallel flow

There has been considerable development in recent years in modeling transitional

flows by the use of Parabolised Stability Equations (Herbert & Bertolotti 1987,

Bertolotti 1991). The linear and non-linear dynamics of convectively-unstable dis-

turbances in spatially-evolving boundary layers can be described accurately with

little computational effort. The flow can be compressible, and the disturbances
three dimensional.

As the name suggests, the method involves "parabolising" the governing equa-

tions for boundary layer disturbances. The solution is represented by a disturbance

pattern resembling the local eigenfunction, modulated by a spatially-evolving oscil-

latory factor. Both the disturbance pattern and the wavelength of the oscillation are

assumed to evolve slowly with streamwise position. Starting at a chosen streamwise

station, the solution is marched downstream; with a single sweep the evolution of
the boundary layer disturbance is described.

The formulation and solution of a set of adjoint Parabolised Stability Equations

promises to provide a description of the efficiency with which a wide range of bound-

ary layer motions are excited by direct forcing. In contrast with the regular PSE,

the adjoint equations are marched upstream, starting at the outflow end of the com-

putational domain. In this way, the events within the domain that give ri_ to a

Tollmien-Schlichting disturbance at the outflow are identified. This approach is an

extension to non-parallel flows of the results described in Section 2.1. The adjoint

PSE can be solved within the same well-established computational framework as

the regular PSE. The adjoint solutions are a natural complement to the regular
solutions.

Thanks to F. Bertolotti, a copy of the PSE library of subroutines has recently
been made available. The following preliminary results have been obtained:

1. The adjoint Parabolised Stability Equations have been formulated for three-

dimensional disturbances in a two-dimensional spatially-evolving boundary layer.

2. Solutions for a two-dimensional Tollmien-Schlichting wave in parallel flow have

been checked. Figure 2 gives a graphic illustration of the receptivity maximum that



26 D. C. Hill

I
R= 700

0.1 0.01 0.001 0.0001

0.3 0.2 =iii 0

Lower Branch R = 2000

FIGURE 2. Plot of the efficiency with which Tollmien-Schlichting waves are excited

by a point source of momentum of unit magnitude, oscillating at a frequency f =
20 x 10 -s. Contour values are shown in order to indicate relative magnitudes only.

appears in the Blasius boundary layer (the y-scale has been expanded for purposes

of visualization). It is positioned at the lower branch of the neutral stability curve

and at a height of about half the displacement thickness from the wall, i.e. at
the critical layer. (Figure 2 is a plot of the magnitude of the adjoint velocity

and represents the magnitude of the response due to a unit amplitude harmonic
momentum source.) The solution has not been normalized, so that contour values

do not indicate a physical measure of the response that will arise for unit forcing.
However, the relative magnitudes illustrate the zone of high sensitivity.

The effect of non-parallelism is expected to play a larger role for three-dimensional

disturbances and compressible flows. This has yet to be investigated.

_._ Boundary layer control by suction

Small amounts of localized wall suction can reduce dramatically the amplitude of

Tollmien-Schlichting waves travelling in a boundary layer. This significant effect has
been studied in detail because of its impact on Laminar Flow Control technology

(Nayfeh at al. 1986, Saric & Reed 1986, Reynolds & Saric 1986). The numerical

perturbation scheme of Reed & Nayfeh (1986) provides a computational analysis of
the effect of an arbitrary distribution of suction strips beneath an incompressible

boundary layer. Masad & Nayfeh (1992) have developed a scheme for compressible

boundary layers.
The effect of suction is to modify the mean flow both upstream and downstream

of the slot. A TS-wave that enters this region of the flow grows at a rate which

is different from that in the undisturbed flow. Integrating these changes over the

entire flow gives the net effect of the suction on the disturbance anxplitude.

We construct here an analogous flow, i.e. a flow which has an identical effect

upon the TS-wave amplitude. The analogous flow involves a local modification to

the boundary layer profile directly above the slot, in proportion to the amount of
suction at that streamwise station.
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FIGURE 3. Schematic representation of the real flow (a) and analogous flow (b).

The analogous flow replaces the boundary profile by a faster, thinner profile. A

simple explicit form has been found for the equivalent profile: Let ¢(x) be the

strength of the wall suction velocity (scaled on U_) at streamwise location x, with

local Reynolds number R. Let U(y) is the form of the profile, y being the distance

from the wall. The net effect of the suction ¢(x) is identical to that of replacing
U(y) locally by

Ua(y) = U(y) -t- ¢(x)R (1 - U(y))dy, (8)

together with a uniform downflow of strength ¢(x) across the entire boundary layer.

The fractional increase in the effective freestream flow speed is the product of
¢(x) with the local Reynolds number based on displacement thickness.

Figures 3(a) and 3(b) offer a schematic representation of the real flow and the

analogous flow, respectively. If the effect of the modification to the local growth

of a TS-wave is integrated in each case, the same net change in amplitude will be
found.

To understand the effect of suction, we can thus consider the dynamics of Tolhnien-

Schlichting waves in thinner, faster boundary layers. For frequencies close to the

lower branch of the neutral stability curve, the destabilizing influence of an increase

in the flow speed is too weak to counter the stabilizing effect of the thinning of the

layer. In practice, a disturbance at the frequency which is most "dangerous" from

the point of view of transition is controlled by suction applied close to the lower

branch. The disturbance an_plitude is reduced typically by a large amount. By

contrast, for frequencies close to the upper branch {much less "dangerous" from the

point of view of transition), the modified profile tends to be less stable. Suction

leads to an increase in the amplitude of disturbances at these frequencies. However,

there is no reported experimental evidence of amplification of higher frequencies
due to suction.

3. Future work

The efficiency with which acoustic waves are scattered into TS-waves by surface

roughness has already been investigated in detail. The acoustic waves are taken

to have infinite wavelength, which reflects the "infinitely" fast speed at which they

propagate. Disturbances such as freestreazn turbulence convect at, or close to, the

flow speed and have finite lengthscales associated with them. How efficiently do
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such motions scatter into TS-waves? I intend to address this question using an

extension of the adjoint method employed for the acoustic scattering problem.

Secondary instabilities play a key role in the so-called K- and H-type transition
routes: three-dimensional disturbances grow upon a finite amplitude TS-wave until

the flow evolves rapidly to turbulence. The following questions will be addressed:
What is the most efficient means of exciting the secondary instability? Can it be

controlled/suppressed?
Stationary crossflow vortices appear on swept airfoils in response to surface rough-

ness. Secondary instabilities then lead to a breakdown to turbulence. It is impor-
tant to understand the process by which the crossflow vortices arise and to identify

those locations where roughness elements are most important. An investigation of

this problem will be made using the adjoint PSE in combination with the classical

independence principle.
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By O. Zeman

1. Motivations and objectives

Wingtip vortices are generated by lifting airfoils; their salient features are com-

pactness and relatively slow rate of decay. The principal motivation for studying

the far field evolution of wingtip vortices is the need to understand and predict the

extent of the vortex influence during aircraft take-off or landing. On submarines a

wingtip vortex ingested into a propeller can be a source of undesirable noise.

The flow field associated with a single vortex freely propagating in the envi-

ronment is difficult to measure. On an aircraft, the vortices are generated in pairs,

and these have a tendency to meander and interact with each other. Environmental

conditions such as stratification and ambient turbulence may exert an important in-

fluence on the vortex as well. So far, the only quantitative measurements of wingtip

vortex (far field) evolution in flight experiments have been reported by Rose &

Dee (1963). Wind tunnel experiments of an isolated vortex have been reported

by Hoffmann and Joubert (1963), Phillips and Graham (1984), and Bandyopad-

hyay et al. (1991). In these experiments, a pair of oppositely loaded airfoils have

been employed to generate a turbulent vortex with a wake- or jet-like axial flow

field. Measurements of trailing vortices behind a lifting hydrofoil (in water) were

made by Baker et al. (1974) and Green & Acosta (1991). The near field turbulent

structure of a single wingtip vortex has been measured by Zilliac et al. (1993). At

present, experimental data of a far-field vortex growth are sparse, and data on tur-

bulence quantities in the vortex are virtually nonexistent. The major difficulty in

measuring vortex turbulence is the vortex meander, which results in contamination
of turbulence statistics.

The main objectives of this research are i) to establish theoretical understanding

of the principal mechanisms that govern the later (diffusive) stages of a turbulent

vortex, ii) to develop a turbulence closure model representing the basic physical

mechanisms that control the vortex diffusive stage, and further iii) to investigate

coupling between the near and far field evolutions; in other words, to study the
effect of initial conditions on the vortex lifetime and the ultimate state.

At this stage of the effort, I have concentrated on studying a rectilinear, or line,

vortex. Thus, the actual vortex evolution in space downstream from a generating

wingtip is replaced by evolution in time. The line vortex is axisymmetric in the

mean and treated in cylindrical coordinates, where radial distance and time are

the only independent variables. The vortex is assumed to be isolated from external

influences and its evolution to be independent of the details of the initial (prescribed)

conditions. The influence of different initial conditions will be investigated in future.

When compared with experiments, standard k-e models are known to overpredict
the decay rate of a line vortex. This is due to the absence of the cotation effects

r _L__AGE
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in the turbulence kinetic energy equation. Our past experience with modeling the

airflow over hills indicated that a Reynolds stress closure (RSC) model is a must

if one is to predict the observed distribution of Reynolds stresses and mean wind

on the hilltop. Here, the (convex) streamline curvature can significantly alter the

turbulence structure and stress distribution (Zeman and Jensen 1987). We have,

therefore, employed a full RSC model where the curvature effects are present intrin-

sically and appear as explicit terms once the model equations are cast in cylindrical

coordinates. As we show later, the RSC model predictions are in broad agreement

with the observed line vortex growth, while the k - e version of the model yields

unacceptably high turbulent intensities and vortex growth rates.

The further stages of this research effort are described in the Future Work section

of this report.

2. Accomplishments

The main accomplishments to date have been the development of a RSC closure

model and the theoretical and scaling analysis of the turbulent vortical flow. These

accomplishments are described in detail in the forthcoming manuscript (Zeman

1993). The principal result reported here is the model-experiment comparison of the

vortex growth rates for different vortex Reynolds numbers. It appears that the mean

vortical flow generated by the wingdp very effectively suppresses the Reynolds shear

stress which mediates the extraction of energy from the mean flow by turbulence.

In consequence, the vortex core growth rate is controlled only by molecular viscosity

and the vortex turbulence decays since the turbulence production rate is very nearly

zero. This rather unexpected result appears to be supported by experiment as is

evident from Figure 1. This section is subdivided in two parts: Model formulation

and description and comparison with experiments.

2.1 Model formulation and description

The cylindrical coordinates (r,O, z) are the natural choice for the Reynolds-

averaged description of the turbulent vortex flow. The presence of the pressure-

strain and transport terms in the RSC equations requires that the equations be

formulated in generalized coordinates xi. Assigning arbitrarily the azimuthal angle

0 -= xl, radius r = x2, and axial distance z = x3, we obtain the metric tensors

of transformation giJ,gij whose only nonzero components are 922 = 93a = 1 and

gxl r2; the contravariant ga_ = -1= ga_" It is then fairly straightforward but ar-

duous to convert the equations for, say, the contra_-ariant tensor u'uJ to physical,

Reynolds stress components in cylindrical coordinates (see e.g. Durbin 1993, also

Zeman 1993). Prior to the conversion one must choose an appropriate model for the

rapid part rl/_ of the pressure strain term Ilij = p(uij + uLi)p -1 • Here, we employ

the general (linear) version of the rapid model proposed by Zeman and Tennekes

(1975); written in Cartesian tensor notation the rapid part is

2 1 9
= 3S.b_ij ck'2(Rikbjt + Rjkbik)]. (1)H_ 2q ['_Sij -1- al(,..,Cikbjk + Sjkbik -- ) +

Here, bii = uiuj/q 2 - (50/3 is the turbulence anisotropy tensor and q2 = u.iu j is

twice the turbulent kinetic energy (hereon TKE); the mean strain (S) and rotation
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(R) tensors are defined as Sij = ½(Uid + ULi ) and Rij l= 7(Ui4 - Uj,i). The
coefficients al and a2 can, in principle, be functions of the flow invaxiants and the

turbulence Reynolds number. In practice, al and as are constant, chosen for the

best agreement with experiment. The version of the above model was successfully
employed in a boundary layer flow with significant streamline curvature effects
(Zeman and Jensen 1987) with al = 0.375 and a2 = 0.225.

Labeling the azimuthal, radial, and axial fluctuating velocity components as u,

v, and w, respectively, and U(r, t) as the mean azimuthal (vortical) velocity, we can
write the set of turbulence model equations as follows:

.... la 9 2COu2 4(1 - a2)_-_ U + 2(1 a, _ a2)Ps - II_, - ---(rT.,,,.) - -'T,,v - e, (2)
Ot r 3 r Or r 5

_al 1 0
-4(1- u + 2( 2 y)P,- nL- + 2T.. 2= r r r - 5e, (3)

0_- 4 lo') 9

- - 3" (4)

¢) lrT

= 2(1 - a2)(u 2 - v2) = -{0.4_" + (0_ 1 -- (It 2 )_- -- ¼(OL 1 -- 0.3)q2}r-_(_--)
Ot r 0 UP r

_iia 1 cO 2 1
uv r2 (5)

In the above equations, IIi_ = 3.25(u--'/-_- ] 2--_q bo)e stands for the so-called slow
return-to-isotropy pressure term, and Tij_, = uiuju£ are the third moment terms

(ui stands for u,v,w). Ps = -_-_(_-_U - E) is the TKE production rate (by the
r

U
mean strain o U - 7)" The closure equation for the rate of dissipation used at the
present time is in a standard form:

cOe 1 1 cO
3.8(1 , - 0.75P ) (6)Ot r cOt

with r = q2/e is the turbulence (equilibrium) time scale and fl = 1 -0.3 exp(-R 2)
where Rt = q4/(9ev) is the turbulence Reynolds number.

By summing (2), (3), and (4), the TKE rate equation is obtained

10q 2 1 cO

20t - P_ - _ - -Or (rTqq_)'r (7)

Here q2 = _-7 + _- + _ and Tqqv ]= _(T,,._ + T.,,_ + Tu,,,o) is the (total) flux of
q2/2 in the outward radial direction. Note that curvature effects associated with

the factor U/v in (2) to (4) are absent in (7).
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_.I.1. Concerning the transport term model

To first approximation, the third moments Tij_ can be considered as radial fluxes
of the second-order quantities involved. After some experimentation, we have settled

on the following scalar-type, gradient transport model:

O-
T_ = -(v,r + v)_, (8)

where ¢ is any second-order quantity in (2)-(7) including e and the (radial) eddy

transport coefficient vtr is

-- 1

Yrt = 0.07 "rv2 1 + dlr2(K_)'/r s" (9)

Here, the prime (') stands for radial derivative, and Kz = Ur = F/27r is the an-

gular momentum (in z direction); the adjustable constant dl is set tentatively at
dl = 0.02. The modification of the eddy coefficient in (9) by the curved flow

(stability) parameters is a novel idea, and its rationale is based on the analogous
modifications in modeling buoyancy driven flows (Zeman and Lumley 1976). An

analogy between streamline curvature and buoyancy has been originally suggested

by Bradshaw (1969). Townsend (1976) proposed a curved flow parameter analogous

to the gradient Richardson number, i.e.

3
Ric- (V,)2

The modifying factor (K_)'/r 3 in (9) is apparently analogous to the Brunt-Vaisalla

frequency squared N 2 in flows with buoyancy, and the sign of K'z corresponds to the
sign of (potential) temperature in stratified flows. Within the bulk of a turbulent

vortex core, K" > 0, which means turbulence damping.
Donaldson and Sullivan (1971) employed for the modeling of the same (line vor-

tex) flow the invariant transport model

-uiuJu k o¢ --r(uiul(uJuk),l + permutations in (i,j, k)).

The author found this type of model to give unrealistically high levels of the third

moments; their effects overwhelmed the solutions. Evidently, the invariant model of
Donaldson and Sullivan is incomplete because it does not include curvature (strat-

ification) effects. Ettestad and Lumley (1985) considered the full third-moment
equations with the curvature terms included. The resulting transport model was

too complex to be applied in actual flow computations, but the modifying factor

r2(K2z )'/r 3 does appear repeatedly in the Ettestad and Lumley expressions for eddy
coefficients. Finally, it is interesting that an eddy transport coefficient similar to

(9) can also be inferred from a Lagrangian mlalysis (see Zeman 1993; Ettestad and

Lumley 1985). The invariant form of the transport model (8) and (9} for general

(non-axisymmetric) flows will be considered in future work (Zeman 1993}.
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_.I.IL Concerning boundary and initial conditions

The boundary conditions at the eenterline r = 0 are not readily obvious but can

be inferred from the following reasoning. If the turbulence undergoes a solid body

rotation, the solutions to the equations (2)-(7) must admit a homogeneous solutions
independent of r. It follows that at r = 0,

u2 = v2 = Orr = 0 and h-T = O.

The last condition stems from the symmetry requirement. Symmetry also requires

that near r = 0 the mean flow is solid body rotation and thus (U/r)' = 0; this,
according to (5), is consistent with h--fi(r = 0) = 0 only if _-_ = _-. This centerline

turbulence axisymmetry is not directly imposed on the flow, but it is satisfied in

actual computations. Similar observations have been reported by Donaldson and

Sullivan (1971), who used the same boundary conditions. It is noted that the above

boundary conditions are consistent with a theoretical analysis of Shariff (1993)

(brought to my attention by Dr. Moser of NASA Ames). Sharif's analysis is based

on the requirement that the velocity components (u, v, w) be analytical near r = 0.
It then follows that near r = 0 the components behave as

u--_ = a 2 + bur 2 -_ = a 2 -1- bvr 2 , and w---i = c2 + bwr 2 .

Evidently, the turbulence axisymmetry is a requirement of analyticity of the fluc-
tuating flow field at r = 0.

The centerline dissipation ec is obtained from the integral balance of the TKE

equation (7), i. e., ec must satisfy the integral

oo{ 10q 2-_--_- + P, - e}rdr = 0. (10)

Durbin (1991) showed the integral constraint to give the proper value of • at the

wall in a (steady) channel flow. Here, the situation is somewhat different; the flow

is unsteady and near r = 0, q,_,= (utr + u)q,Zrr -- 2•c.
The conditions at r --* o¢ are F = Fo, (or U = Fo/(27rr)), and all second-order

turbulence quantities tend to zero. The turbulence time scale r = q2/• is prescribed

to be large (with respect to vortex core time scale) but finite as r --_ oo

The initial profile for the azimuthal velocity conditions U(r, t = 0) is given by the
prescribed circulation distribution

F
- 1 - exp -1.26(r/Rl )'z, (11)Fo

where r = Rl is the radius of max{U} = Ul, and it delimits the size of the

vortex core; for the distribution (11) the maximum velocity U1 occurs where F =

2rrUiRl = 0.716Fo. Since the vortex evolution approximately obeys the scaling laws
Ul o¢ (Fo/t)l/2 and Rl cx (Fot)l/2, the initially prescribed Reynolds number Fo/U
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remains constant in time. The Gaussian profile of F is a laminar vortex solution, or

if one assumes the eddy viscosity to be constant, it is a turbulent vortex solution

as well (see e.g. Govindaraju & Saffman 1971).

Initial profiles of the turbulence moments were specified as

u-_=v 2=w 2=u_oh(r/R1), ,=u_or-lh(r/R1) and _=0,

with h(r/) = r/2 exp{1 - r/2}. The above profiles were fairly consistent with the

equation solutions but introduced transient oscillations in the _ profiles. The

initial turbulence intensity uo/U1 is a parameter of the flow problem which also

specifies the initial turbulence Reynolds number Rt. It has been found, so far, that

the long-time evolution of the vortex is not very sensitive to the value of uo/Ul or to

the initial spatial distribution of turbulence. However, this aspect will be explored

in more detail in future work.

2.1.$. Interpretation of the model equations

The equations (2) through (7) have been arranged to highlight the different effects

of the mean strain S 1= _(U - U/r) and rotation U/r on turbulence. According to

(7), the turbulence is produced only if the mean strain S is nonzero. The circula-

tion distribution F(r) in the bulk of a turbulent line vortex remains approximately

Ganssian as described by (11), thus S < 0 and the shear stress u--6 is positive. In-

spection of the equations reveals that for the gradient K*z cx F _ > 0, the generation

of the stress u--6 is severely inhibited and so is the TKE production Ps = --_S. In

the limit of rapid solid body rotation U/r = f_ >> l/r, equations (2), (3) and (5)

yield an oscillatory solution with (inertial wave) frequency 4(1 -a2)l/2 fL The rapid

rotation theories give the frequency of oscillations to be exactly 4fl (Mansour et al.

1991), suggesting that the rapid-pressure model constant a2 should approach zero

in the rapid limit Or >> 1. We found this, however, to be of little consequence for

the model results and retained, for the present, the value a2 = al = 0.3 inferred

from reaiizability considerations (Zeman 1981). By comparing the TKE equation

(7) with the RSC equations (2)-(5), one can easily see that the rotational terms

(associated with U/r) are absent in the TKE equation showing that, as alluded to

earlier, standard k - e models cannot represent the stabilizing effect of the concen-
trated vortex flow. Results supporting this conjecture are presented in the following

section.

2.3. Computations, comparison .with experiments

The most important result of the present work is contained in Figure 1. Here,

the vortex core growth parameter

_(R1 ) (12)
= A(rot)i/2

is plotted against the flow Reynolds number ro/U. The observation data points

plotted are a mixture of flight and laboratory experiments as indicated in the figure

legend. There are two set of model results; one computed with the present RSC
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FIGURE 1. Vortex core growth rate bl (defined in (12)) vs Fo/V. Data compiled

in Govindraju and Saffman (1971): • ; Baker et al. (1974): • ; RSC model results:

o- Q ; k - e model: " .... " ; -1//2 slope: ........ .

model, and the second with a k - e model. The k - e model consists of equations
(6), (7), and the constitutive relation for the stress _-6

VTo _v
U---v= 1 _- Clr2(Ktz)2/r 3 ( U -- r )" (13)

In (13) VTo is the standard eddy viscosity for curvature-free flows• The curvature ef-

fect on the eddy viscosity is included through a modification similar to (9)• Without

this modification, the computed turbulence levels and vortex core growth rates were

hopelessly unrealistic. Even so, as shown in Figure 1, the growth rate parameter bl
computed with the modified k - e model is still an order of magnitude higher then

indicated by experiments or the RSC model. This trend could not be significantly

altered by increased damping through the constant cl.
The present results, although still tentative, have some surprising implications•

First, as seen in Figure 1, the experimental growth parameter bl appears to follow

a trend bl 0¢ (Fo/V) -z/2 which suggests viscous rather than turbulent diffusion of

the vortices. In other words, it suggests a dependence

Rl cx (vt) 1/2 o_ (ro/v)-l/2(rot) 1/2.

This trend is evidently reproduced by the RSC model results. Indeed, the inspection

of computed stress profiles show that the turbulent shear stress _-_ is so effectively
damped by the swirl that within the vortex core the angular momentum transfer

is dominated by the viscous stress. Whatever turbulence is present throughout the

vortex, it is passive and does not contribute to the momentum transfer, except in

the outer part of the vortex 2R1 < r < 3R1. Hence, the RSC-computed vortex
appears to be quasi-laminar. On the other hand, the same vortex predicted by the
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FIGURE 2. Circulation profile evolution computed by: (a) k - e model, (b) RSC

model; the indicated time of evolution t is in units of T = (Rl/U1)o.

k - e model is fully turbulent within the core and the angular momentum transfer

is dominated by turbulence. Thus as indicated in Figure 1, the growth parameter

bl inferred from the k - e model results is independent of Fo/u.

The second result of interest is the circulation profile evolution. As seen in Figure

2, there is a striking difference between the F profile evolutions computed by the
RSC and k - e models. The fully turbulent vortex computed by the k - e model

develops an overshoot in circulation, while the quasi-laminar vortex computed by
the RSC model evolves on the viscous time scale and changes very little within

the time period shown. Both of these results are consistent with the analysis of

Govindraju and Saffman (1971). They inferred from the equations of motion that
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for a turbulent vortex, the nondimensional quantity

1 f0 _ Fo -I'r = R--_ r-_ Frdr

should approach zero for sufficiently large times t >> R_/Fo, and thus the F dis-

tribution should develop an overshoot. Evidently this is true for the k - e model as

shown in Figure 2a. On the other hand, a lack of a visible overshoot (about 1% of

Fo) in Figure 2b, indicates that I 7 remains approximately constant and this result

is again consistent with the quasi-laminar vortex computed by the RSC model.

In conclusion, on the basis of experimental evidence presented in Figure 1, we

have inferred that the vortex growth is dominated by viscous effects and not by

turbulence. This view is consistent with the RSC model results, which suggest that

the turbulent momentum transfer is suppressed by the stabilizing effect of the swirl

and that the vortex turbulence plays only a passive role in the vortex dynamics.

3. Future work

The modeling results are sufficiently interesting to continue exploring the wingtip

vortex modeling in the present geometry. There are many questions to be answered

before proceeding to a more complex flow configuration which allows for an axial

shear and pressure gradient. It has to be established whether the computed quasi-

laminar vortex is a representation of physics, or whether it is an artifact of the RSC

model. To this end, we shall test different model versions, investigate the effect of

initial conditions, and make more detailed model-experiment comparisons.
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New concepts for Reynolds stress transport
equation modeling of inhomogeneous flows

By J. Blair Perot AND Parviz Moin

1. Motivation and objectives

The ability to model turbulence near solid walls and other types of boundaries

is important in predicting complex engineering flows. Most turbulence modeling

has concentrated either on flows which are nearly homogeneous or isotropic, or on

turbulent boundary layers. Boundary layer models usually rely very heavily on the

presence of mean shear and the production of turbulence due to that mean shear.

Most other turbulence models are based on the assumption of quasi-homogeneity.

However, there are many situations of engineering interest which do not involve large

shear rates and which are not quasi-homogeneous or isotropic. Shear-free turbulent

boundary layers are the prototypical example of such flows, with practical situations

being separation and reattachment, bluff body flow, high free-stream turbulence,

and free surface flows. Although these situations are not as common as the variants

of the flat plate turbulent boundary layer, they tend to be critical factors in complex
engineering situations.

The models developed in this work are intended to extend classical quasi-homo-

geneous models into regions of large inhomogeneity. These models do not rely on the

presence of mean shear or production, but are still applicable when those additional

effects are included. Although the focus will be on shear-free boundary layers as

tests for these models, results for standard shearing boundary layers will also be
shown.

Eddy viscosity models and k-e type models are fundamentally incapable of repre-

senting shear-free boundary layers. They assume that there exists a proportionality

between the turbulent stresses and the mean shear. This clearly can not be tile

case in a shear-free flow. The next level of turbulence modeling, Reynolds stress

transport equation models, are the simplest type of model capable of capturing the
shear-free or nearly shear-free situation.

The models developed in this work are based on our studies of the near wall behav-

ior of turbulence in shear-free boundary layers (Perot & Moin, 1993). These studies

of shear-free turbulent boundary layers have provided a physical understanding of

the wall/turbulence interaction, and it is the goal of this paper to translate this
physical understanding into improved near wall turbulence models. The inclusion

of more physics into the models presented herein allows us to obtain better agree-

ment with direct numerical simulation (DNS) data without resorting to additional

model constants, ad hoc damping functions, or imposed near wall behaviors.
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2. Dissipation model

2.1 Introduction

In the following section, some advances in near wall dissipation modeling are

presented. What is described is not so much a new model, but a technique for

extending classical (quasi-homogeneous) dissipation models into the near wall re-

gion. Unlike previous techniques which were ultimately ad hoc in nature, this model
for the near wall dissipation is based oil a simple mathematical decomposition and

physical observations of the behavior of near wall turbulence.

The physical inspiration for the dissipation model is found in figure 1. This

figure is from simulations of a shear-free solid wall (Perot 8¢ Moin, 1993). In these
simulations, a solid wall (no-slip boundary conditions) is suddenly inserted into

isotropic, homogeneous decaying turbulence. The wall interacts with the turbulence,

creating a boundary layer in the turbulent statistics which grows into the turbulence

as time progresses. The figure shows two planes parallel to the solid wall plotted
with contours of the instantaneous tangential velocity. The top plane is far from

the wall, and the min/max values of the contours correspond to rms intensities

that are very close to their free-stream value. The bottom plane is much closer to
the wall and has much smaller min/max levels (and rms intensities). The crucial

observation from these figures is that the structure of the turbulence in the two

planes is very similar (i.e., the location of the contours), while the magnitude or
scale of the turbulent fluctuations (measured either by the rain/max of the contours

or by the rms intensities) differs by an order of magnitude from one plane to the
other. The distance over which the turbulent intensities are damped by the wall is

much smaller than the distance over which the eddy structure (as measured by the

eye) changes appreciably. This implies that in very near wall turbulence, there is

a separation of scales, with the turbulent intensities changing much more rapidly
than variations in the actual eddy structure. These observations should also apply

in the near wall region of standard fiat plate boundary layers. Whether they apply
in even more complicated situations is not important since this is the inspiration,

not the foundation, for the dissipation tensor model.

The decomposition of turbulence into a turbulent intensity component and a
turbulent structure component can be accomplished mathematically in the following

way.

Here, ui is the fluctuating velocity, Qip is a generalized turbulent intensity, and

_p is the velocity structure. This operation can also be thought of as a mapping
or a transformation which scales the fluctuating velocity component, so that the

resultant statistical quantity, _p, is a nearly homogeneous quantity. Several appro-

priate choices for Qip which accomplish this goal will be discussed in Section 2.3.
However, at this point it is sufficient to observe that equation (1) is a mathematical

decomposition, which is well defined as long as Oi/, is all invertible matrix.

The turbulent intensity, Qip, has an overbar to indicate that it is considered to be
a statistical average of turbulence quantities and a known quantity. Mathematically,
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the definition of Qip is arbitrary, but physically, it is important to choose a definition

for Oip which reflects its intended function as a measure of the turbulent intensity.

Different definitions for Qip produce models of varying complexity and accuracy. In

the context of this work, two definitions for Qiv will be considered. One definition
is based on the turbulent kinetic energy and the other definition is based on the

Reynolds stress tensor. Better definitions for Qip tend to produce better models at

the price of increased complexity.

Having chosen a definition for the turbulent intensity, the properties of the veloc-

ity structure can then be derived from equation 1. The velocity structure (unlike the
turbulent intensity tensor) retains the random spatial and temporal fluctuations of

the original velocity field. The velocity structure can, in a sense, be thought of as a
normalized fluctuating velocity scaled by the generalized turbulent intensity tensor.
The result of this normalization by the turbulent intensity is that the velocity struc-

ture becomes a homogeneous, or at least a quasi-homogeneous, turbulence quantity.
It now becomes possible to think of the decomposition (equation 1) as a splitting
of turbulence into "homogeneous" factor (velocity structure) and "inhomogeneous"

factor (turbulent intensity).
An analogy with Reynolds decomposition into mean and fluctuating velocities

can be made. However, in this case, the decomposition is multiplicative rather than

additive, and rather than subtracting off the mean to get to fluctuating velocity, we

are dividing by some turbulent intensity to get the velocity structure. The unknown

turbulent quantity of interest (the velocity structure) now has zero mean and unity

(or nearly unity) variance.

_._ Ma_heraa_ical details

The result of substituting this mathematical decomposition (equation 1) into the

definition for the homogeneous dissipation tensor,

e_.i =- 2vu,,pu i,--'--_, (2)

is

2v
1

+ _ (Q_..,/_m_.),_Qj. + Q..(_m_.),_Qj.,_) (3)

1
+ _ (Q,_,.W_..Qj. - -Q,.,wm..-Qj.,_)

where the tensor Wm.v = (fimfin,p - fim,vfi.) is antisymmetric in m and n.

This expression for the dissipation tensor splits the dissipation into three funda-

mental parts: the dissipation due to spatial variations in the turbulent intensity

(first term on the right hand side), the dissipation due to spatial variations in the
turbulent structure (second term on the right hand side), and coupling terms rep-

resenting the interaction of the first two dissipation terms with each other (last two

terms on the right hand side).
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The contribution to the dissipation due to variations in the turbulent intensity

(first term on the right hand side) dominates in regions of large inhomogeneity

where the turbulent intensity changes rapidly. This "inhomogeneity term" depends
only on the turbulent intensity tensor and the Reynolds stress tensor (by definition,

fi,nfin = Q_nliRij-Q_.: where Ri.i = uiuj ). The generalized turbulent intensity, 0ij,
is assumed to be well defined in terms of other quantities available in the closure,

so the inhomogeneity term does not need to be modeled. Because equation 3 is

an exact expression, the inhomogeneity term can also be thought of as an "exact

term". In regions where the in_homogeneity term dominates (such as near walls),
equation 3 will give exact results for the dissipation.

The second term on the right hand side of equation 3 involves a statistical quan-

tity which will be called the structure dissipation tensor. This quantity is much
easier to model than the dissipation tensor itself because the velocity structure is,

in fact,quasi-homogeneous. Therefore, models based on the assumption of quasi-

homogeneity (i.e. most classical dissipation tensor models) can be expected to work
very well for this quantity.

The two coupling terms can be thought of as redistribution terms. Depending
on the definition of Qij, they either are identically zero or their trace is zero. The

separation of scales between variations in the turbulent structure (with length scales

on the order of the large eddy length scale) and variations in the turbulent intensity

(with much smaller length scales on the order of v_) suggests that the coupling
terms should be relatively small; typically, processes which occur at different scales

tend to have little interaction. The exact nature of these terms will be further

investigated when specific expressions for Qij are examined.

_.3 Dia_ipation model

There are a number_ of choices that can be made for the generalized turbulent

intensity tensor, Qij. A simple choice is an isotropie scale tensor proportional to the

square root of the turbulent kinetic energy, Qij = kl/z6ij, where k is the turbulent
kinetic energy. The resulting expression for the dissipation then becomes

2vF'iJ = (]¢l/2),p(]t.1/2), p -_- _ (k),p _- ]¢tli,p_j,; (4)

,p

This equation is attractive because of its simplicity. The only term requiring mod-

eling is the velocity structure dissipation, gij _-- 2vfii,pfij,p. The inhomogeneity term

and redistribution term (the first and second terms on the right hand side) are

well defined, and in the sense described previously, they are "exact". Despite its

attractiveness, this model suffers from some basic flaws. In particular, it is only

weakly realizable; the kinetic energy is guaranteed to remain positive when using
this model, but the Reynolds stress tensor itself may become indefinite.

A more attractive dissipation model can be obtained by using a slightly more

complicated choice for the velocity scale tensor given by Qim Qmj -_ Rij. This makes

Qij the square root of the Reynolds stress tensor. Because Rij is positive definite,

this square root is well defined (up to a plus or nfinus sign on each eigenvalue, which
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can be arbitrarily chosen). Note that Qij has the same eigenvectors as Rij with

eigenvalues that are the square root of the eigenvalues of Rij. Qij is, therefore, a

symmetric tensor like Rii. This definition is a natural generalization of the definition
used to derive equation 4. The sign of the square root is not important in the model
because all terms involving the generalized intensity appear in pairs, canceling out

any dependence on the sign. Note that with this definition fiifij = 8ii, indicating
that the velocity structure is very close to a homogeneous isotropic quantity.

With this enhanced choice for the turbulent intensity tensor, the expression for

the dissipation takes the form

_ij = 2VQirn,pQjrn,p -I- -'Qirn_mn-'Qnj

-_ 12 (-Qim,pWrnnp-'Qnj - "Qim Wmnp-Qnj,p) .

(5)

where emn = 2vfii,pfij,p is again the velocity structure dissipation tensor.
The first two terms of equation 5 are the now familiar inhomogeneous and ho-

mogeneous dissipation terms. The third term of equation 5 acts as a redistribution

term and is particularly interesting. It is zero if the Reynolds stress tensor is either

isotropic or homogeneous. In fact, it is zero if Qim,p = sQi,, where s is a scalar
quantity. This turns out to be the case in spatially decaying turbulence if there is

no return to isotropy in the sense of Lumley (1978). So in some sense, this term

can also be thought of as a return to isotropy term.

Further insight into the redistribution term can be gained by evaluating the

Reynolds stresses in their principal coordinates. Then Qij is a diagonal tensor

with Q_ = RX/_ (here and throughout the text, no summation is implied for

Greek indices). In this arrangement, the redistribution term only contributes to

the off-diagonal components of the dissipation tensor; hence, it is a coupling or
redistribution term. It is partly responsible for enabling the dissipation tensor to

have principal axes that differ from those of the Reynolds stress tensor. This is

a useful property of the model, but one which is burdensome because the tensor
W,,,,k introduces nine new unknowns for which no model (even quasi-homogeneous)
now exists. In what follows, the terms involving Wm,k will be neglected. In the

tests that have been performed, this simplification does not appear to affect the

performance of the model significantly and, therefore, appears to be warranted.

2.4 Mathematical constraints

It can be shown that every component of this model has the correct leading (and

often higher order) terms in a Taylor series expansion about a no-slip wall. This

non-trivial result holds irrespective of the model for the structure dissipation as long

as the structure dissipation approaches a constant near the wall. It is a result of the

fact that inhomogeneity dominates in the near wall region, and the inhomogeneous

term of equation 5 is exact.

It is important that models have the correct asymptotic behavior as they approach

the wall (Launder & Reynolds, 1983). For instance, at a solid wall the transverse
components of the dissipation (ell and e33) must exactly balance the corresponding
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diffusion components, or turbulence will spuriously be created by the wall. Some

dissipation models (see Lai & So, 1990) have the asymptotic behavior for a no-slip

wall imposed upon them. These models will probably fail when presented with any
other type of boundary such as a free surface, a transpiring wall, etc. This is not

the case for the current model, which does not impose asymptotic behavior, but

which obtains correct asymptotic behavior (in numerous flow situations) by virtue
of the "exact" inhomogeneous term.

This model also satisfies certain mathematical constraints. By its construction,

the model is Galilean and tensorally invariant. It can be seen from equation 5 (with
Wmnk = 0) that if the structure dissipation tensor is positive definite, then the

dissipation tensor can also be guaranteed to be positive definite. Strict realizability

(Schumann, 1977) in the low Reynolds number limit can be shown by analyzing

the viscous terms. In principal coordinates, the sum of the viscous diffusion term,
Dij = vRij, kk, and dissipation term becomes

-eo,_ + D,_,_ = 2vR1/2RI/2 - Raaeaa--,_,_ -_,pp (6)

Therefore, when the Reynolds number is low, the following expression can be writ-
CR1/2_ , nl/2,

ten, _.._a j,t = t_(_taa ),ram -- _R_. This indicates that the turbulent intensities

diffuse and decay exponentially in time, which, along with equation 6, guarantees
that the Reynolds stress tensor can not become indefinite as time advances.

2.5 Results

Two classical models for the homogeneous dissipation tensor assume that dis-

sipation is isotropic, (e_j = 2_e_ij), or that the dissipation is proportional to the

Reynolds stress tensor (Rotta, 1951), (e R = _R,j). Figures 2a and 2b show com-

parisons of these two models with the direct numerical simulation (DNS) data of
Perot _z Moin (1993) for flow near a shear-free solid wall. It is evident that the

isotropic assumption works well far from the wall and the "low Reynolds number"

Rotta model works well close to the wall. An improved near wall dissipation model
can, therefore, be constructed using a combination of these two classical models. A

number of mixed models of this type exist, each differing in the choice of parameter
which is used to blend the two models.

To demonstrate the possible improvement, a mixed model is also presented in

figures 2a and 2b. The parameter A = 1 --'_(amnanrn -- ampapnanm) (Tselepidakis,
1991), where aij = Rij/k-2/3_ij is the non-dimensional Reynolds stress anisotropy
tensor, is used to blend the two models. A is 1 in isotropic turbulence and zero in

the two component limit that occurs at a wall. The mixed model is then written as

2 e
eiM = Ascii I + (1 - A)-_Rij (7)

An expression very similar to the mixed model will also be used to model the

structure dissipation tensor in the inhomogeneity-capturing model,

eij =_ AS_ O'+(1-d) (8)
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where _ is (in analogy with the dissipation) one half of the trace of the structure

dissipation tensor. Equation 5 with equation 8 and Wqk = 0 gives the full inhomo-

geneity capturing model for the dissipation tensor,

{2aR,j R,,,,n,,,)k. +(a-l) k2
(9)

Note that in the mixed model e must be specified. In the inhomogeneity model,

must be specified. In the tests of the models, these quantities will be supplied from
the direct numerical simulation (DNS) data, but in an actual modeling situation,

they would have to be derived in some other manner (usually from a dissipation

transport equation). The quantity _ is probably easier to arrive at (since it is much

smoother than e). In addition, _ has less effect on the overall model performance

because the terms involving _ are small near the wall. The inhomogeneity model is

also shown in figures 2a and 2b. It falls almost exactly on the DNS data.

Both the mixed model and the inhomogeneity model work well for the case of a

shear-free solid wall. A better test of the two models' ability to handle inhomogene-

ity is presented in figures 3a and 3b where DNS data, the mixed model, and the

inhomogeneity model are shown for the case of turbulerce next to a free surface.

The mixed model gives an incorrect value at the surface for the tangential dissipa-

tion and completely inappropriate behavior for the normal dissipation component.

The inhomogeneity model, on the other hand, closely follows the DNS data and

gives particularly good far field and near surface behaviors.

The final test of the model is presented in figures 4a-d. This shows the case of

fully developed channel flow. The data is from Mansour, Kim _ Moin (1988). Both
models work well for the streamwise component of the dissipation. The inhomo-

geneity model captures the function value and the slope exactly at the wall. The

spanwise components of the models behave very similarly, with the inhomogene-

ity model showing an improvement in the slope at the wall. However, the mixed

model severely overestimates the normal dissipation and does not have the correct

qualitative behavior for e12.

2.6 Summary

A new modeling technique for extending classical dissipation models into regions

of large inhomogeneity has been developed. It is based on a hypothesis of separation

of scales and derived from a simple mathematical decomposition. This decomposi-

tion uses the the square root of the Reynolds stress tensor as a generalized turbulent

intensity to transform (or map) the fluctuating velocity into a quasi-homogeneous

quantity (the velocity structure). The resulting inhomogeneity model, derived from

this decomposition, satisfies all known mathematical constraints and is relatively

simple to implement. It has been shown that the model gives superior results in
both wall and surface bounded flows. The formalism developed here has also been

applied to modeling of the scalar dissipation and heat flux dissipation (Malan, 1993)

with equally impressive results.
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3. Pressure-strain model

3. I Introduction

The pressure-strain term is an inter-component energy redistribution term; it

causes no net change in the total kinetic energy. Experiments on homogeneous

turbulence (Lumley _ Newman, 1977) show that this redistribution by the pressure-

strain (at least by the nonlinear (slow) part of the pressure-strain) tends to result
in a return to isotropy. The logical assumption from this observation is that the

pressure-strain term is driven by the non-dimensional anisotropy in the Reynolds

stresses, aij = Rij/k - 2/35_j, which by construction is a trace free tensor, like the
pressure-strain.

Almost all models for the pressure-strain are based on the assumption that the

pressure-strain must be a function of the anisotropy tensor. The models of Rotta

(1951), Shih & Lumley (1985), and Speziale, Sarkar and Gatski (1991), are examples

of models of this type. Some of these models are very complicated, but none produce

truly convincing results. In fact, Reynolds (1988) has shown that any pressure-

strain model based on this assumption is incapable of capturing the effects of rapid

rotation. Any model of this type is also incapable of predicting a flow where the

boundary condition on the tangential velocity changes suddenly, such as the sudden

insertion of a permeable wall (Perot _ Moin, 1993) or the sudden change from a

solid wall to a free surface boundary condition. In those situations, the pressure-

strain term changes instantaneously, whereas the Reynolds stress and anisotropy
tensors take some time to evolve.

Furthermore, return to isotropy cannot be the driving mechanism for the pressure-

strain term near a free surface or a solid wall. In such cases, the tangential stresses

are larger than the normal stresses, and yet there is still a transport of energy to

the tangential stresses. In many near wall flows, the pressure-strain term actually

enhances anisotropy. In the face of all this evidence, it seems clear that the very

assumptions upon which pressure-strain modeling are based need to be reevaluated.

3.2 Modeling

The physical model for turbulent flow proposed in Perot & Moin (1994a) is a

useful guide to pressure-strain modeling. In that model, it is assumed that in any
turbulent flow there are opposing events. These events will tend to balance each

other (resulting in zero net transfer of energy) unless one of the events is weaker

than the other. In the near wall case, antisplats (blobs of fluid moving away from

the boundary) are weaker due to the fact that tangential energy is removed by

dissipation near the wall. This limits the antisplat's ability to convert tangential

energy into normal energy. In homogeneous turbulence, the situation is somewhat

different: if one component of the turbulence is less energetic than the others then

it will not be able to deliver energy to the other components as effectively. This will

result in a net transfer of energy into the less energetic component and a return to

isotropy.

In the near wall case, dissipation and diffusion control intercomponent energy
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transfer by determining the imbalance between splats and antisplats. In homoge-

neous turbulence, Reynolds stresses anisotropy controls energy transfer. To trans-
late these ideas into a model, it is instructive to look at the evolution equation for

the non-dimensional anisotropy. In unsheared homogeneous turbulence, the exact

equation for the non-dimensional anisotropy tensor is

aij,t = --if- + k k •
(lO)

where ris : RiS - _k,SiS and •iS = •is + _•SiS are the dimensional anisotropy of

the Reynolds stress and dissipation tensors, Ilis is the pressure-strain tensor, and

ais : RiS/k -2/3_ij is the nondimensional Reynolds stress anisotropy tensor. Note

that typically the dissipation is more isotropic than the Reynolds stresses (due to

quasi-isotropy in the smallest scales of motion), so the second term on the right
hand side of the equation tends to increase anisotropy. For return to isotropy to

occur, the pressure-strain must be large enough to drive the overall right hand side

negative. A reasonable model for the pressure-strain is, therefore, that the pressure

strain is proportional to the right hand side,

Ilis= -C.(-e/s +  r/S) (11)

where C, > 1 will guarantee return to isotropy in homogeneous turbulence.

This model has the attractive property that it behaves appropriately as a func-

tion of Reynolds number. At very high Reynolds numbers, dissipation becomes

isotropic, and the standard return to isotropy model (of Rotta) is recovered. At low

Reynolds numbers, the approximation •iS = [Ris (Rotta, 1951) becomes increas-
Yr.. at low Reynolds numbers, and the model approachesingly accurate, so eij = k *J

zero in the low Reynolds number limit. Therefore, at low Reynolds numbers there

is no return to isotropy, a property which was proposed by Lumley (1978) and

observed in simulations performed by Hallback & Johansson (1992).

To use this model in inhomogeneous flows, it must be generalized. Instead of

--•iS, the quantity -ei s + dis will be used; di s = Yrij.mm is the anisotropy in the
viscous diffusion term, which is zero in homogeneous turbulence. In addition, the

inverse time scale _, is not correct near a wall. It is replaced by A_. where A is

the flatness parameter described earlier in the section on dissipation modeling. A

is 1 in isotropic turbulence and 0 at a wall. This accounts for the fact that in the

two component limit near a wall, classical return to isotropy is not expected. The

model for the pressure-strain then becomes

l'I/j = -C,r(-ei.i -t- vris,mm -t- A-_.rij )
(12)

As the next section will show, this model gives reasonable behavior ill shear-free

boundary layers. Since the development given here is essentially for the nonlinear

(slow) pressure-strain, these shear-free flows are appropriate situations in which to

test the model.
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3.g Results

In the following test eases, there is only one independent pressure-strain term

since IIl 1 = -21-I22 = II33, and all off-diagonal terms are zero. Figure 5a shows the

performance of the model (equation 12) and the Rotta model (Ilij = -Cl¢aij) in a

shear-free wall flow at a Reynolds number of 134 (Perot & Moin, 1993). The direct

numerical simulation (DNS) data is for the time t/To = 1.0, where To is the large
eddy turnover time measured at the moment of boundary insertion. As previously

mentioned, any model based on Reynolds stress anisotropy will have fundamentally
incorrect behavior at the wall, so the more complicated variants of Rotta's model
were not examined.

It can be seen that the present model, which includes the dissipation anisotropy,

gives very good agreement with the DNS data. Figure 5b shows predictions for the

same flow at a later time, t/To = 4.5. The agreement of equation 12 (C,_ = 1.5)
with DNS data remains very good. The Rotta model not only has the wrong shape

and has asymptotic behavior near the wall, but actually predicts the wrong sign of
energy transfer near the wall.

The case of a free surface (Perot & Moin, 1993) is shown in figure 6a. The
Reynolds number is 134, and the time is t/To = 1.0. Again, the current model
(with C_ = 0.5) shows good agreement with the data. Figure 6b shows the same
simulation at a later time, t/To = 4.5, and the model continues to be accurate.

Because the pressure-strain term is smaller in the free surface case, the statistical
and numerical noise is more apparent than in the shear-free solid wall case.

From these two cases and the case of homogeneous turbulence where C_ is typi-

cally taken in the range 1.5 - 1.8, it appears that the coefficient C,_ is not universally
constant. This is not entirely surprising. It is reasonable that the two terms in the

anisotropy equation (equation 10) might be proportional, but overly optimistic to

expect that the constant of proportionality is fixed. In fact, Lumley (1987) has
shown that the constant could be a function of the turbulent Reynolds number. As

mentioned previously, we believe this model explicitly accounts for those Reynolds
number effects, but the possibility for dependence on additional parameters still
exists.

3.4 Summary

The pressure-strain model presented in this section was based on the anisotropy
evolution equation for unsheared homogeneous turbulence, with generalizations to

include the effects of inhomogeneity and two componentality near a wall. Al-

though adjustment of the Rotta coefficient was required, this algebraic model for the
pressure-strain produces surprisingly good results in the two test cases studied. Like

the model for the dissipation, it is possible to think of this pressure-strain model

as a combination of two terms, a near wall term (proportional to the azlisotropy
of the viscous terms) and a quasi-homogeneous far field term (proportional to the

Reynolds stress anisotropy). This model breaks with tradition by not only using

the Reynolds stress anisotropy in the model. This is a simt)le , yet vital step.
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4. Turbulent transport model

4. I Introduction

There is a high degree of similarity between the role of the triple correlations in

the Reynolds stress equations and the role of the Reynolds stresses in the mean mo-

mentum equations. Both enhance transport, both become increasingly important

as the Reynolds number increases, and both lead to fuller profiles in the respective
statistical variables. For higher Reynolds number flows, where the gradients near

the wall are very steep, it is particularly important to model the turbulent transport

term accurately.

The modeling history of triple correlations is rather sparse. Most often, com-

pletely different physical effects such as viscous diffusion and pressure trmmport
are lumped with turbulent transport. Such lumping is probably art unwise practice
and will not be considered further in this section; it supposes that entirely different

physical phenomena can be modeled collectively. Daly & Harlow (1970) used a

gradient diffusion hypothesis for the triple correlations and proposed

T_jk = C.-kRk,R,j,t (13)
e

where a value of C, = .22 was suggested by Launder & Morse (1979). Hanjalic

& Launder (1972) noted that this model did not have the proper symmetry in its

indices. They suggested

Tijk = ctk (RktRo,_ + Rj_Rik,t + RitRkj,_) (14)

with Ct = .11. This more complicated expression can be derived from a simpli-

fication and modeling of the exact evolution equations for the triple correlations.

More complicated expressions for the triple correlations also exist (Lumley 1984),
but are not considered here since preliminary tests showed little difference with the

Hanjalic & Launder model.

_._ Modeling

Gradient transport models of the type mentioned above give only moderate to

poor agreement in shear-free boundary layers. The problem with these models is not
endemic to shear-free flows; Mansour, Kim _z Moin (1988) witnessed equally poor

performance in the case of fully developed channel flow. The clue to better modeling
of the triple correlations is contained in the very first sentence of the introductory

paragraph. The triple correlations should be modeled by using generalizations of

low-order Reynolds stress models.

The simplest model for the Reynolds stress uses the eddy viscosity hypothesis.

The eddy viscosity hypothesis works surprisingly well in a number of different flows.

We might hope that an eddy viscosity hypothesis for the triple correlations might
work as well, or perhaps even better, since higher order statistics tend to be more
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uniform. The standard Hanjalic & Launder model (equation 14) can, in fact, be
written in an eddy viscosity formulation,

T T
Tijk = Ct(uT Rij,t + u_tRi_,t + vilRkj,t) (15)

where v T = -kR, ,j. The Hanjalic & Launder model is not usually viewed in this fash-

ion; typically, it is justified as a severe simplification of the modeled triple correlation

evolution equation. However, when viewed as an eddy viscosity model, there seems

to be little justification for this choice of eddy viscosity. Instead, it is proposed that

the eddy viscosity be a velocity scale times a length scale, as originally proposed

by Prandtl in 1926. The previous section on dissipation modeling indicated that

the generalized square root of the Reynolds stress tensor is an appropriate tensor

velocity scale. So the following eddy viscosity is proposed, v T = -QijLM, where

QikQkj = Rij and LM is a mixing length.

The wealth of literature on mixing length theory, originally developed for Rey-

nolds stress modeling, can now be adopted at this higher level for the triple corre-

lations. In this work, the mixing length will be assumed to be proportional to the
kal2

large eddy length scale, L_ = --7-- oo, except close to walls or surfaces, in which

case the mixing length is proportional to the distance from the wall. This choice

of a mixing length, essentially due to Von Karman (1931), is simplistic. In compli-

cated geometries, the distance to the wall is ill defined. It is not the goal of this

section to evaluate mixing length models in detail, but to evaluate the modeling of
the triple correlations and the turbulent transport term. It will be shown that this

new method for defining the eddy viscosity improves turbulent transport models

and is a promising direction to be moving in terms of triple correlation modeling.

The full eddy viscosity model for the turbulent transport terms then becomes

[16)

where the constant Cu has been adjusted to a value of .18 and the mixing length is
given by LM = (L -1 + y-1)-l, which gives a smooth trazmition between the near
wall and far field limits.

4.3 Results

Figures 7a and 7b show comparisons of tlle models with direct numerical sim-

ulation (DNS) data from Perot & Moin (1994b). Figure 7a shows the tangential

turbulent transport term for the case of a shear-free wall at a Reynolds number of

134 and time t/To = 1.0. Figure 7b shows the normal turbulent transport term un-

der identical conditions. The triple correlations take longer to converge than double

correlations so there is some noise in the data, particularly far from the wall where

turbulence length scales are largest. There is also some noise in the models from
numerical differentiation.

The Daly & Harlow model captures the normal component well but overestinmtcs

the magnitude and position of the peak in the tangential component (it is, of course,

also tensorally incorrect). The Hanjalic & Launder model captures the tangential
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component better, but at the expense of overestimating the normal component.

The eddy viscosity model gives better overall results than either of the previous
two models. Similar results are shown for the shear-free wall case at a later time

(t/To = 3.0) in figures 8a and 8b. The conclusions remain the same.

The ease of a free surface at a Reynolds number of 134 and time t/To = 1.0 is

shown in figures 9a and 9b. In this case, both the Daly & Harlow and the Hanjalic

& Launder models overestimate the turbulent transport terms. The Daly & Harlow

model is worse for the tangential component, asld the Hanjalic & Launder model

is worse for the normal component. Again, the eddy viscosity model gives better

overall agreement with the DNS data. The eddy viscosity model tends to decay

too quickly as one moves away from the wall, but this could easily be remedied by

letting the O(y) behavior in the mixing length persist farther into the flow.

It should also be mentioned that the eddy viscosity model has the right asymp-

totic behavior at the wall, whereas the standard models do not. Considering the

simplicity of the eddy viscosity model and its relationship with an already well

understood branch of turbulence modeling, and considering the fact that the eddy

viscosity model gives similar or improved performance for these shear-free flows, it

seems reasonable to recommend this approach in the future for triple correlation
modeling.

4.4 Summary

One of the most obvious physical effects of turbulent flows is their increased

ability to mix and transport flow quantities; eddy viscosity mimics this physical

process. In this section, the Hanjalie & Launder model for turbulent transport

was rewritten in an eddy viscosity formulation. An improved model for the triple
correlations was developed, and good agreement with DNS data was achieved. Even

better agreement with the DNS data could be achieved with improved aald expanded
definitions of the mixing length.

5. Conclusions

Near wall models for terms in the Reynolds stress evolution equations have been

developed. These improved models perform well in the cases studies. The improve-

ment shown by the models is based upon the inclusion of more physics into tile

modeling procedure. None of the models require additional constants over their

quasi-homogeneous counterparts, and no ad hoe functions or a priori limiting be-
haviors have been imposed on the models.

Three fundamentally new concepts have been proposed in the context of this

paper. The idea of decomposing the fluctuating velocity using a multiplicative de-

composition into an intensity and a structure term led to an enhanced dissipation

model. In terms of pressure-strain modeling, we have shown the efficacy of using the

dissipation and diffusion anisotropy in conjunction with Reynolds stress anisotropy.

Finally, we have suggested that the concept of eddy viscosity is useful at any mod-

eling level when used to represent the effects of higher order correlations (in this

case, triple correlations).
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By P. A. Durbin

1. Motivation

Two projects are reported herein. The first is the development and testing of

an eddy viscosity transport model. This project also is a starting point for our

work on developing computational tools for solving turbulence models in complex
geometries--the computational aspect is collaborative with Nagi Mansour. The

second project is a stochastic analysis of the realizability of Reynolds stress trans-

port models. This work was motivated by private discussions with Charles Speziale

(Boston University) and related collaborative work with him, and also by Steve

Pope's presentation at the (Bill) Reynolds Turbulence Symposium in Monterey this
year (Pope 1993).

1.1 Eddy viscosity transport

Momentum mixing-length, eddy viscosity models have been popular since the idea

was introduced by Prandtl. They invoke a quasi-equilibrium assumption, essentially
requiring that the mixing of lumps of fluid takes place in a time short compared
to that of the mean flow evolution. In many situations of fluid dynamical interest,

mixing cannot be assumed instantaneous and a dynamical equation for the turbu-

lence is required. A rather important example is that of boundary layers subjected

to strong pressure gradients: on a practical level, it has been found that mixing
length models are unable to predict this type of strongly non-equilibrium flow. A

reasonable step is to formulate an analytical eddy viscosity transport model that
extends the mixing-length idea by admitting non-equilibrium effects; this is what I
have done.

This research has a strong practical incentive. Engineering fluid dynamicists

are recognizing a need for more elaborate turbulence models as the complexity of
the flows they calculate increases. This has led to a willingness, even a desire,

to introduce turbulent transport models into prediction codes. Currently most

aerodynamics codes (that solve the Reynolds averaged Navier-Stokes equations)
use algebraic eddy viscosity models. It has been found that algebraic models are

unable to predict the region of reversed flow near the trailing edge of an airfoil at

angle of attack. The failure in this particular case indicates a general inadequacy for
calculating complicated mean flows. This shortcoming of simple algebraic models

motivated recent research into dynamical equations for eddy viscosity, including that

reported herein (Durbin et aL 1994). Baldwin and Barth (1990) first proposed that
an eddy-viscosity transport equation might be effective in complex aerodynamic

flows. The Baldwin-Barth study led to further development of their formulation by

Spalart and Almaras (1992) and was a primary impetus for the present work.
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Notable features of the present model are that it uses an elliptic relaxation equa-

tion to avoid damping functions, that it is formulated solely in terms of local vari-

ables, and that it is tensorially and Galilean invariant. In these respects, the model

was formulated with complex flows in mind.

1._ Realizability

The exact, unclosed Reynolds-stress transport equations are usually the start-

ing point for formulations of second-moment closure models. Modeling consists

of replacing unclosed terms by semi-empirical formulae that express these terms
as functions of the dependent variables. After introducing models, quantities with

names like 'u''_' no longer represent non-negative functions obtained by squaring and

averaging a random variable; rather, they are simply the dependent variables of the

model; they are obtained as the solution to a differential equation. However, it is

desirable to formulate the equations of the model so that variables like u 2 do main-

tain their non-negativity. In essence, this is the issue of realizability in second-order

turbulence closure modeling.

The present report demonstrates how realizability can be addressed by a con-
structive method. This involves formulating a stochastic process for which the

Reynolds-stress model is the exact evolution equation of second moments. The

model then is guaranteed to be realizable because it is exact for a well defined

stochastic process. In the present analysis, second-moment closure models of the

type currently in use are shown to be exact for the statistics of a particular form

of Langevin equation. When that Langevin equation is well-defined, the Reynolds-

stress model is guaranteed to be realizable.
It is assumed that the appropriate physics are accommodated by the moment

closure; the stochastic analysis is purely a mathematical method for analyzing such

models. The realizability criteria that are derived are s'u_cient, but not necessary,

conditions; also, the analysis is only of homogeneous turbulence.

2. Accomplishments

2.1 The eddy viscosity transport model

The model is described at length in Durbin et al. (1994). It consists of a parabolic

transport equation for the eddy viscosity:

v_ (i)
D V(v + b'T)_TVT + P_ - c2[SIl]T -- c4 L--_"-'_ VT ----

and an elliptic relaxation equation for Pu:

2 2
LpV P_ - P_ : c3lVVTI 2 - [SIvT. (2)

The dependent variable Pv contains the turbulence production. The elliptic relax-

ation in (2) introduces a wall effect that suppresses the production of eddy viscosity

near a surface. In (1) and (2) the ds are model constants, the L's are length scales,

and IS] 2 = 1/2 (OiUj + OjUi)(OjVi "_- OiUj) is a measure of the mean rate of strain.
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FIGURE 1.

geometry.
Contours of constant U, showing trailing edge separation and flow

The eUipticity in (2) is important near surfaces; away from surfaces, or regions of
strong inhomogeneity, the model relaxes to a parabolic transport equation. The first

term on the right side of (1) describes turbulent and molecular transport; the third

and fourth terms model dissipation of VT, as does the first term on the right side
of (2); the second term on the right side of (2) allows for production of turbulence
from mean flow gradients.

To complete the model, the length scales must be prescribed and then the con-

stant coefficients chosen. A difficulty of a model with only one primary dependent
variable--or, more precisely, only one non-negative dependent variable--is that lo-

cal turbulent length and time scales cannot be formed from turbulence quantities
alone. For this reason Lp and L_ have been prescribed as functions of the local
mean rate of strain, as well as of t,T:

L2.= ISl= IV.TI =
IVSl-----_ + c_ ISl----_ (3)

L_= 2 • 2mm(L,,,max( t'T,C_v)/ISI)% • (4)
The boundary conditions to the model are

VT = ft. VVT = 0 (5)

at a no-slip surface with unit normal fi,

ft. Vt,T = P_, = 0 (6)

at the edge of a boundary-layer, or prescribed free-stream values far from an airfoil.

No surface boundary condition needs to be imposed on P, to satisfy (5).



70 P. A. Durbin

0.10'

0.08

_, 0.06

0.04

0.02"

0
0 0 0 0 0 0 0 1

U/Uoo

FIGURE 2. Mean velocity profiles at locations along the suction surface of an

airfoil at angle of attack, showing trailing edge separation. The profiles are at

z/c = 0.62, 0.675, 0.731, 0.786, 0.842, 0.897 and 0.953. The circles are experimental

data.

The selection of model constants is described in Durbin eg al. (1994). To sum-

marize, the present values are c2 = 0.85, c4 = 0.2, cl = 3.3, cp = 1.2 cm = 2 and

c3 = (1 - c_)/s¢ 2 + 1 - c4/(1 + _¢4Cm) where s¢ is the von Karman constant.

Figures 1 and 2 illustrate the model solutions. They are from a computation
of flow around a NACA4412 airfoil at 14 ° angle of attack. Contours of constant

U-component of mean velocity are plotted in figure 1. These illustrate that the flow

separates just upstream of the trailing edge. The whole computational domain is
not shown: the inflow is 14 chords upstream and is angled upward by 14 ° .

Figure 2 contains mean velocity profiles on the suction surface near the trail-

ing edge. The last two profiles show that the model predicts the correct degree of
separation. The Baldwin-Lomax, equilibrium eddy-viscosity model fails to predict

separation in this flow; the rapid evolution of the flow as it undergoes separation
violates the assumption of near equilibrium. The operation of the non-equilibrium
model would seem to be as follows: the eddy viscosity transports mean momentum

from the free-stream to the surface, counter balancing deceleration by the adverse

pressure gradient. As the boundary layer thickens, eddy viscosity will be produced
in the outer region of the boundary layer. However, this process is not instan-

taneous. If the pressure gradient decelerates the near-wall flow before the eddy

viscosity can increase, the flow will separate. The transport equation describes

the temporal evolution and spatial redistribution of the eddy viscosity as the flow

passes through separation. Equilibrium, or algebraic, models assume that the eddy
viscosity adjusts instantaneously to the level of shear and hence they overpredict

the turbulent transport in this trailing edge flow.
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_.2 Stochastic analysis of realizability

The stochastic method will be presented by describing how it is used to derive a

sufficient condition for realizability of the most general, linear, second-order closure

model for Reynolds stresses. However, this method is far more widely useful and can

be applied to all existing Reynolds stress transport models, including those that are

non-linear in the Reynolds stress tensor. The method is presented at greater length
in Durbin and Speziale (1993). It involves showing the Reynolds-stress model to be

the exact second-moment equation of a Langevin stochastic differential equation.

The exact moment equation of a well defined stochastic process is realizable, by
definition--for instance, quantities like u-_ have non-negative values that could be
obtained by squaring and averaging a random variable.

In homogeneous turbulence, the General Linear Model consists of the following
ordinary differential equation for the evolution of the Reynolds stress tensor

d u-_tu J - -T ( UiU----_- _ k_ij ) - c2( eij _ _ e6ij )

2 2
-c3( Do - PChs) - c.kSo + Po - (7)

In this equation, P0 = -u--i_cqkUj -u-j-ff'iOkUi is the production tensor, Dis =

--u-'-_'"kcqsUk-- uT_tgiUk is a tensor introduced by Launder et al. (1975), P = 1/2 Pii
is the rate of turbulent energy production, and e is its rate of dissipation. All the
ci's are empirical, numerical constants and T is a time-scale.

We will show (7) to be the second moment of the stochastic differential equation

Cl

dui = -'_uidt + (c2 - 1)ukakUidt + c3u_cgiUkdt

+ c_-_dWi(t) + _MikdYr'k(t) (8)

with

2 c1_-_ 3 "c0=5 -l+(c2+ca) - (9)

In (8), W and }W_ are independent Weiner processes (dVl]'id_/Yj = 0). M is a
symmetric matrix that is required to satisfy

1 2

M_ - _M 8i./= -ks 0 (10)

where _li_ = MikMks, M s M 2 " "= _k, and Sis is the rate of straan tensor, defined as

[OiUs +O.iUi]/2. The matrix M can be constructed as follows: in incompressible flow,

S is a sym metric matrix with eigenvalues that sum to zero; it can be diagonalized
by the unitary matrix U of eigenvectors:

S = U.diag[Al,A2,Aa] • tU (11)
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where AI _> A2 > A3 are the eigenvalues in decreasing order. They satisfy

AI +A2 +A3 =0. (12)

In terms of these eigenvalues

(13)

By virtue of (12) and (13), M z = 3A1.
The second moment equation for (8) is derived by applying the rules

dld2i =0

dWidkVj = dtSij

ujdWi = O.

(14)

Using these to compute du-'f_/dt for (8) shows that (7) is formally the exact second
moment equation of the stochastic process (8) (Durbin and Speziale 1993). The only

issue is whether the Langevin equation (8) is well-defined.
If the coefficients are all bounded, then (8) will be well-defined if the square roots

are real valued. This requires cj and co to be non-negative, cj is an empirical

constant of the model (7) that can be chosen to be positive, co is a function given

by (9). The condition that co > 0 translates to

cl >_ 1 - (c2 + ca) P + _cmA13 (15)

where M 2 = 3A1 has been used and the time-scale has been set to T = k/e. The

right side of this inequality depends on the flow. As long as (15) is met, solutions to
the general linear model are ccrtain to be realizable; however, (15) is not guaranteed
to be met, so the general linear model need not always have realizable solutions.

Our experience with models that are special cases of (7) is that (15) is usually

satisfied.
In extreme cases, far from equilibrium, unrealizable solutions to the general linear

model can be generated. However, the present analysis shows that one easily can

modify the model to guarantee realizable solutions: just alter cl so that (15) is

always satisfied. For instance, if cl = 1.8 is usually a satisfactory value, then

replacing this constant by the function

3 A (16)

will enforce the inequality (15). This ensures realizability in extreme cases without

altering the model in usual cases.
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FIGURE 3. Solution trajectories of the LRR model projected onto the second-

invariant-third-invariant plane. ---, original LRR model; - - -, modified, realizable
LRR model.

Launder et al. (1975) imposed certain symmetry and normalization constraints

that led them to specialize (7) by setting

c + 8 8c- 2 60c- 4

c_ =--]-]--; c3 = 11 , cs 55

where c is a constant they set to 0.4--this is the, LRR model.

condition (16) becomes

(17)

With (17), the

¢1 = max[1.8, 1- 0.873P + 0.545A1]. (18)

Figure 3 shows trajectories of the LRR model for homogeneously sheared turbu-
lence, with the initial condition

Sq2/e = 20; bal = -0.27; b22 = -0.33; b33 -- 0.6; ba2 = bla = b23 - O.

These values give P/s = 0, -II = 0.27 and III = 0.053, where II and III are the

invariants of the Reynolds stress tensor. The trajectories in figure 3 are solutions to

the LRR model projected into tile second-third invariant plane. They start in the

upper right corner of the triangle and ultimately are attracted to the equilibrium

point in the lower center or the triangle. The initial value of 1 - 0.S73P/c + 0.545A1

is 3.73 (note that A1 = Sq2/4c) so that (15) is violated if ca = 1.8. Realizable
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solutions must remain inside the curvilinear triangle of figure 3. The dotted curve

shows that the LRR model exits the realizable region for this initial condition. Thus,

although (15) is a sufficient but not necessary condition, it provides an insight into
the existence of unrealizable trajectories. The solution trajectory remains inside

the realizable region when the modification (18) is applied, as shown by the dashed

curve in figure 3.

3. Future plans

Development of numerical tools for solving Reynolds-stress models in complex

geometries is under way. These are needed so that we can test and further develop
models. The computer program being developed is based on the incompressible

Navier-Stokes solver (INS-2D) written by Stuart Rogers at NASA Ames. This is a

general geometry code and the Reynolds stress solver is being written so that models
can be implemented readily. The program under development is an extension of

that used to calculate figure 1.

The greatest potential utility of Reynolds stress transport models is in strongly
non-equilibrium flows. However, certain difficulties remain. For instance, all exist-

ing models predict incorrect rates of relaxation toward equilibrium in highly per-
turbed flows. Future work will include this area.

The analysis of realizability raises some intriguing questions. The realizability of
models for non-homogeneous flows is largely unexplored. Although I have consid-
ered this issue for the type of near-wall models that I have developed, I have no

mathematical understanding of why they seem to produce realizable solutions. The

ellipticity of non-local wall effects suggests using maximum principles.
Stochastic differential equations are popular models for Lagrangian dispersion

calculations. The present use of stochastic equations was solely to analyze statistical
moment models. This work can be made the basis of self-consistent Reynolds-stress

and Lagrangian dispersion models.
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Computation of turbulent flows over

backward and forward-facing steps
using a near-wall Reynolds stress model

By S. H. Ko

1. Motivation and objectives

Separation and reattachment of turbulent shear layers is observed in many im-

portant engineering applications, yet it is poorly understood. This has motivated

many studies on understanding and predicting the processes of separation and reat-

tachment of turbulent shear layers. Both of the situations in which separation is

induced by adverse pressure gradient, or by discontinuities of geometry, have at-

tracted attention of turbulence model developers. Formulation of turbulence closure

models to describe the essential features of separated turbulent flows accurately is
still a formidable task.

The present report describes computations of separated flows associated with

sharp-edged bluff bodies. For the past two decades, the backward-facing step flow,

the simplest separated flow, has been a popular test case for turbulence models.

Detailed studies on the performance of many turbulence models, including two-

equation turbulence models and Reynolds stress models, for flows over steps can

be found in the papers by Thangam & Speziale (1992) and Lasher & Taulbee

(1992). These studies indicate that almost all the existing turbulence models fail

to accurately predict many important features of backstep flow such as reattach-

ment length, recovery rate of the redeveloping boundary layers downstream of the

reattachment point, streamlines near the reattachment point, and the skin friction
coefficient.

An elliptic relaxation model was proposed by Durbin (1991) to represent inhomo-

geneous effects near the surface of wall-bounded shear flows. This model obviated

the need for ad hoc eddy viscosity damping functions in the near wall region. After

showing that the elliptic relaxation approach was successful in simple flows such as

channel flow and flat plate, attached boundary layers, the model was extended to

a full near-wall Reynolds stress model (Durbin, 1993) (hereinafter NRSM).

Using the NRSM, Ko & Durbin (1993) computed the massively separated bound-
ary layer experiment of Simpson et al. (1981) and found that the new model was

able to produce a reasonable separated flow. However, due to ambiguities in the

experimented flow condition, it was difficult to draw any conclusion on the model

performance. Therefore, it is necessary to have a well-defined test case with clear-

cut boundary conditions in order to isolate phenomena which are directly related to

the turbulence model. In addition, Direct Numerical Simulation (hereinafter DNS)

data (Le & Moin, 1993) has recently become available for a low Reynolds number
backward-facing step flow.
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The main objectives of the present study are to calculate flows over backward-

and forward-facing steps using the NRSM and to make use of the newest DNS data
for detailed comparison. This will give insights for possible improvement of the
turbulence model.

2. Accomplishments

As stated previously, the NRSM is capable of describing near-wall effects without

using ad hoc damping functions. The model utilizes elliptic differential equations to
account for non-local wall blocking effects. The model equations will not be listed
here. Detailed discussion of the model and its boundary conditions can be found in

Durbin (1991, 1993); our computational methods are described in Ko (1993).

_.I. Turbulent flows over backward-facing sfeps

Turbulent backward-facing step flows were computed for the experimental con-

ditions reported by three different groups: Kim et al. (1980, KKJ), Driver &

Seegmiller (1985, DS), and Jovic & Driver (1993, JD). DNS data of Le & Moin

(1993, LM) is used for detailed comparison of the Reynolds-stress budgets. Table
1 summarizes flow conditions of the test cases. It is desirable to have a small ex-

pansion ratio Er to minimize freestream pressure gradient effects (Narayanan et ai.,

1974): the KKJ case is subjected to a significant freestream pressure gradient due

to the large expansion ratio; the other two cases are not. Notice also that JD's

experiment and LM's DNS have identical flow conditions; in fact, JD's experiment

was performed in order to verify the accuracy of the DNS. The predicted reattach-
ment lengths Xr for all cases are in very good agreement with the measured X_,

although slightly underestimated.

Group E_ Reh 6* / h Meas. Pred.
= H1/H2 = UoH/u X_ X_

Kim et al. 1.5 45,000 0.03867 7 6.8

Driver and Seegmiller 1.125 37,500 0.2 6.3 6.1

Jovic and Driver 1.2 5,100 0.19 6 5.4

Le and Moin 1.2 5,100 0.19 6

Table 1. Test cases for backward-facing step flows

For all the turbulent backward-facing flow problems, the computational domain

extended from the step (x = 0) to 40H, where H is the step height. This long
domain ensures that the zero-normal gradient boundary condition, O/Ox = 0, is

appropriate for all flow variables at the outlet of the domain. It is often observed

that a shorter computational domain results in unstable and/or unsteady solutions

for separated flow problems.
Along the inlet of the domain, profiles of all the flow variables were specified.

Since the inlet is at the step, which is the onset of sudden changes, the whole

computation procedure and the resulting flowfield are sensitive to the specified
inlet conditions. Therefore, it is very important to use reasonable inlet profiles

in order to simulate a given backstep flow experiment. In the present study, the



Computation of turbulent flows over backward and forward-facing steps 77

FIGURE 1. Computed strea_nlines for DS experiment.

inlet profiles were obtained by the following procedure: (1) obtain the displacement

thickness di* and the Reynolds number Re, based on the reference velocity Uo and

the step height H, at the step from experimental data; (2) calculate the mean

U-velocity, Urn, for the channel upstream of the step using the relation Um =

Uo(1 - 2_*in/Hl), where H1 is the channel height at the inlet of the domain; (3)

run a channel calculation starting with a plug flow having mean velocity Um at the

inlet; (4) find the downstream location where the calculated displacement thickness

6* matches 6*in; and (5) use the channel solution at that location for the inlet

boundary conditions for the backward-facing step flow problems. This amounts to

computing the inlet section independently of the backstep region.

After grid independence testing, the selected grids consisted of 140 uniformly

expanding grid lines in the streamwise direction and 140 (107 for JD's case) highly

non-uniform grid lines in the transverse direction. The maximum expansion (or

contraction) rates of the grid lines ranged from 8 to 10% depending on the case.

This high non-uniformity of the grid is due to the high density of the grid lines

in the near-wall regions and in the mixing layer at the top of the step in order to

resolve the viscous layer: the first grid point off the wall is at y+ _< 0.5, where the

wall unit y+ is defined as y+ =_ yur/v, ur = V/_ and rw is the wall shear stress.

Figure 1 shows calculated streamlines for the DS case (with zero deflection angle

of the top wall). The sharp discontinuity of the backward-facing step geometry

produces a strong shear layer near the step. A large recirculation region is formed

underneath the shear layer, which, in turn, creates a small corner eddy. As the

shear layer spreads, it impinges on the bottom wall near the reattachment point

Xr. Some of the impinging shear layer goes downstream and starts to develop

into a boundary layer (the redeveloping boundary layer). Notice that the present

streamline plot does not show an unrealistic behavior of the separation streamline

near the reattachment point: Lasher and Taulbee 2 observed that the separation

streamline was pulled back underneath the recirculating region when a fine grid

was used in the near-wall region. We used a fine grid and did not observe that
spurious behavior.

Figures 2(a), 2(b) and 2(c) show calculated skin friction coefficients C! for JD,
DS and KKJ cases, compared with corresponding experimental and DNS data. In

all three cases, the model calculations underpredict the negative peak values of C I



78 S. H. Ko

=

2

-2

-at

•, ,.,.-

o ....I'o ....2'0
x/H

'

FIGURE 2A. Skin friction coefficients: • : JD experiment; --: NRSM; ---:

DNS.

3

2

1

-R

FIGURE 2B.

o

o

0 1"0 20 30 40

x/H

Skin friction coefficients: * : DS experiment; _: NRSM.

in the recirculation zones. Also, for DS and KKJ cases (Figs. 2(b) and 2(c)), the

calculated C! is significantly below the experimental data in the regions downstream
of Xr, which means slow and weak recovery of the redeveloping boundary layer.

In all three cases, the model underpredicts the negative peak values of C I in the

recirculation zones. In the DS and KKJ cases (Figs. 2(b) and 2(c)), the calculated

C! is significantly below the experimental data in the regions downstream of Xr,
which means slow and weak recovery of the redeveloping boundary layer. It is

interesting to note that, for JD's low Reynolds number case (Fig. 2(a)), the negative

peak of the measured C I in the recirculation region is comparable in magnitude to
that in the redeveloping boundary layer region downstream of the reattarhment

point.

Surface pressure coefficients Cp (= 2(P - Po)/(pUo2)) are shown ill Figs. 3(a),

3(b) and 3(c) for the three cases. With minor deviation, the calculations show fairly
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good agreement with the measurements for the JD and DS cases. The agreement
for the KKJ case (Fig. 3(c)) is the worst.

Figures 4(a), 4(b) and 4(c) show mean U-velocity profiles at various positions

upstream and downstream of the reattachment point, compared with experimental

data of JD, DS and KKJ, correspondingly. Overall, the agreement of the compu-

tation with the experimental data is very good. For the JD ease (Fig. 4(a)), the
computed U-velocity profile at x/H = 4 shows insufficient backflow in the recir-

eulation region, but otherwise the model predicts the redeveloping boundary layer

almost perfectly. For the higher Re cases, the computations predict not only weak
separated regions but also slow recovery of the redeveloping boundary layers down-
stream of X,.. This finding suggests that low Re DNS data might not be suitable

for developing turbulence models that are mainly used for high Re flows.

Figures 5(a), 5(b) and 5(c) show computed profiles of the Reynolds stress compo-
nents u s, v2, -_--_, at various positions upstream and downstreanl of the reattach-

ment point, compared with JD's experimental data and LM's DNS data. It is quite
encouraging to see that all three Reynolds stress profiles at the step, obtained from

the channel flow solution with Re and 6" matched to the experiment, show excellent

agreement with the experimental data. Thus the inlet conditions computed with the

model are in accord with experiment. In Fig. 5(a), the _ profiles at x/H = 4 and

6 represent the dominance of the shear layer. At x/H = 10, JD's experimental data
already show double peaks of the _-2 profile, one peak being very near the wall. In

the DNS and the model computations, the wall peak emerges further downstream,

as shown in the profiles at x/H = 19. In addition, the _-_ profiles at x/H --- 19
indicate that the redeveloping boundary layer is not fully recovered from the free

shear layer. The agreement between the calculated and the measured _- profiles in

Fig. 5(b) is as good as that between the DNS data and the measurements. In Fig.
5(c), the model calculations overpredict the peak values of -_--_ in the region near
the reattachment point, while the DNS underpredicts them.

The calculated Reynolds shear stress, riO, is compared with DS'_ experimental
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data in Fig. 6. The calculated _ profiles at x/H = 7 and 10 show the peaks

overpredicted by nearly 50%. In the recirculation region, the calculations show the

peaks located higher than the experimental data.

Figures 7(a), 7(b), and 7(c) show the calculated budgets of the transport equa-
tions of U-velocity, k, and _ at four different positions upstream and downstream

of the reattachment point, compared with LM's DNS data. Lines represent the

model calculation and the symbols are the DNS data. Note that all the terms in

the equations were normalized by the reference velocity [70 and the step height H,

and then multiplied by 100.

In Figure 7(a), the convection term -UkOU/Oxk is balanced by the sum of the

Reynolds stress gradient O(-_'-ff'_)/Oxk and the pressure gradient -OP/Ox. Since

the Reynolds stress gradient is the only term through which the turbulence acts on
the mean momentum, it is quite important to understand the meaning of the profiles

of O(-_-ff'_)/Ox_. The fact that at z/H = 2 the O(--ff'fi'-i)/Oxk profiles change from

being negative to being positive around y/H = 1 shows that momentum is being
transferred by the turbulence from the shear layer to the flow in the wall region.

As figure 7(a) reveals, the major deviation in the O(-E'ff_.)/Ox_ profiles is found in

the negative peak levels. The viscous diffusion terms vV 2k is negligible everywhere

except in the region very near the wall. Notice that at x/H = 2 the calculation

shows negative -OP/Ox while the DNS data shows positive -OP/Ox. This deviation

in -OP/Ox seems to be responsible for the deviation in the convection terms. As

the flow goes downstream, the agreement between the model computation and the
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DNS data gets better. In fact, the agreement is very good at z/H = 10 where the
-OP/Ox term is negligible.

As shown in Fig. 7(b), the production rate $:' in the transport equation of the

turbulence kinetic energy is balanced mainly by the sum of the dissipation rate e,

the convection -UrnOk/OXm mad the turbulent diffusion O/Oxm {Vml/O'k(Ok/O:rl) }.

The viscous diffusion O/OXm {v(ak/Oxt)} is negligible everywhere. Notice from the

profiles of the turbulent diffusion that the turbulence kinetic energy is extracted

from the middle of the shear layer and then transferred to the outer regions of the

shear layer. Overall, the model calculation shows very good agreement with the
DNS data.

In the budget of the _-_ transport equation, shown in Fig. 7(c), the production

rate 7>12 is balanced by the sum of the redistribution/12 and the turbulent diffu-

sion, according to the DNS data. However, the model calculation shows that the

contribution from the turbulent diffusion is somewhat smaller than that from the

anisotropic dissipation. In fact, the underprediction of turbulent diffusion seems to

be the major deficiency of the present computation. The NRSM employs the simple

gradient-diffusion hypothesis of Daly k Harlow (Durbin, 1993) for the triple veloc-

ity correlations. A more sophisticated formula for the triple velocity correlations
may improve the model predictions.
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_._. Turbulent flow over forward-facing step

Turbulent flows over block-like structures are observed in a number of impor-

tant engineering applications such as vehicles, buildings, and electronic chips. Un-

derstanding the flowfields over the forward-facing step will enhance the design of
such applications. In addition, the forward-facing step flow provides an example of
pressure-driven separation in a well characterized geometry.

Experimental data reported by Moss L- Baker (1980) will be used for compari-
son. The contraction ratio H1/H2 is 10/11 and the Reynolds number, based on the

step height H and the reference velocity Uo, is 46,000. The inlet of the computa-
tional domain is 10H upstream of the step (x/H = 0) and the exit is located 40H
downstream of the step.

A computed streamline plot near the step is shown in Figure 8. As the boundary
layer approaches to the step, it undergoes an adverse pressure gradient due to the

presence of the step. The boundary layer separates at some distance upstream
of the step, forming a corner separation bubble. Due to the sharp edge of the

step, a secondary separation bubble occurs on the top surface of the lower wall

downstream of the step. The length and height of the corner separation bubble

predicted by the model computation are 1.0 H and 0.45 H whereas those given by
the experimental data are 1.1 H and 0.6 H, correspondingly. Also, the predicted
length of the secondary bubble is 5.5 H while the measured one is 4.8 H.

Figure 9 shows the calculated and measured profiles of the surface pressure coeffi-

cient Cp (=. 2(P-Po)/pUo _) for the stepped w',dl. For the reference pressure Po, the
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freestream pressure at x/H = -8 was used. The calculation agrees very well with

the measurement in the region upstream of the step. As the approaching boundary
layer decelerates in the corner separation region, C_ reaches its peak value of 0.52.
Then Cp drops suddenly to -1.0 at the step, slowly recovering downstream of the

step. Notice that the experimental data show a slight decrease in Cp in the region

extending from the step to a couple of step heights downstream of the step where
the computation shows a monotonic increase in C_.

In Figure 10, the calculated profiles of the U-velocity at various measuring stations
upstream and downstream of the step (z = 0) are compared with the experimental

data. Notice that the boundary layer thickness of the approaching flow is compa-

rable to the step height. As indicated in the profiles downstream of the step, the

model calculation predicts a weak secondary separation bubble and slow recovery
of the boundary layer after the bubble. These findings are consistent with those

for the backstep flow cases. Other than these deficiencies, the calculation is able to

predict the separation of the forward-facing step flows reasonably well.

Finally, the profiles of the Reynolds stress _ are plotted in Fig. 11 along with the

measurements. The calculation agrees excellently with the measurements, quanti-
tatively as well as qualitatively. The calculated and the measured y locations of the
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FIGURE 8. Computed streamlines for a forward-facing step flow.
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u2 peaks in the region downstream of the step are in good agreement, which implies

that the calculation predicts the y location of the shear layer and the separation
bubble correctly.

3. Summary

A near-wall Reynolds stress model (NRSM) has been used in numerical com-
putations for two-dimensional, incompressible turbulent flows over backward and

forward-facing steps. Numerical results were compared with Direct Numerical Sim-

ulation (DNS) data as well as experimental data for various flow quantities. The

comparison reveals that the NRSM predicts the reattachment length fairly accu-

rately. The NRSM also predicts the development of the boundary layer downstream

of the reattachment point correctly when the Reynolds number is low. However,

the model generally predicts a weak separation bubble and a slowly developing

boundary layer when the Reynolds number is high. For more detailed comparison,

budgets of the transport equations for the U-velocity, turbulence kinetic energy k,
and the Reynolds shear stress -h--g were calculated and compared with DNS data.



90 $. H. Ko

REFERENCES

BADR1 NARAYANAN, M. A., KHADGI, Y. N. & VISWANATH, P. R. 1974 Simi-

larities in pressure distribution in separated flow behind backward-facing steps.

The Aeronautical Quarterly. 25, 305-312.

BRADSHAW, P. & WONG, F. Y. F. 1972 The reattachment and relaxation of a

turbulent shear layer. J. Fluid Mech. 52, 113-135.

DRIVER, D. M. & SEEGMILLER, H. L. 1985 Features of a reattaching turbulent

shear layer in divergent channel flow. AIAA J. 23, 163-171.

DURmN, P. A. 1991 Near-wall turbulence closure modeling without "damping

functions". Theoretical and Computational Fluid Dynamics. 3_ 1-13.

DURBIN, P. A. 1993 A Reynolds stress model for near-wall turbulence. J. Fluid

Mech. 249, 465-498.

JovIc, S. & DRIVER, D. M. 1993 Backward-facing step measurements at low

Reynolds number. Reh = 5,000. NASA TM to be published.

Jovlc, S. & DRIVER, D. M. 1993 Reynolds number effects on the skin-friction in

separated flows behind a backward-facing step submitted for publication.

KIM, J., KLINE, S. J. & JOHNSTON, J. P. 1980 Investigation of a reattaching

turbulent shear layer: flow over a backward-facing step. J. Fluids Eugr. 102,

302-308.

Ko, S. 1993 Application of a Reynolds stress model to separating boundary lay-
ers. Annual Research Briefs-1992, Center for Turbulence Research, Stanford

Univ./NASA Ames, 199-211.

Ko, S. & DURBIN, P. A. 1993 Application of a near-Wall turbulence model to

adverse pressure gradient and separating boundary layers. Near- Wall Turbulent

Flows, edited by So et al., Elsevier, 145-153.

LASHER, W. C. & TAULBEE, D. B. 1992 On the computation of turbulent back-

step flow. Int. J. Heat and Fluid Flow. 13_ 30-40.

LE, H. AND MOIN, P. 1993 Direct numerical simulation of turbulent flow over a

backward-facing step. Report TF-58,Thermosciences Division, Department of

Mechanical Engr., Stanford University.

Moss, W. D. & BAKER, S. 1980 Re-circulating flows associated with two-dimen-

sional steps. The Aeronautical Quarterly. 31_ 151-172.

SIMPSON, R. L., CHEW, Y.-T., & SHIVAPRASAD, B. G. 1981 The structure of a

separating turbulent boundary layer. Part 1. Mean flow and Reynolds stresses.

J. Fluid Mech. 113, 23-51.

THANGAM, S. & SPEZlALE, C. G. 1992 Turbulent flow past a backward-facing

step: A critical evaluation of two-equation models. AIAA J. 30, 1314-1320.



°
/

/

Center/or Turbulence Research , " '7
91

Annual Research Briefs 1993 _ ; 4. /
N94- 2".-.-i 46

Large eddy simulation of a boundary
layer with concave streamwise curvature

By T. S. Lund

1. Motivation and objectives

One of the most exciting recent developments in the field of large eddy simulation

(LES) is the dynamic subgrid-scale model (Germano et al. 1991). The dynamic

model concept is a general procedure for evaluating model constants by sampling

a band of the smallest scales actually resolved in the simulation. To date, the

procedure has been used primarily in conjunction with the Smagorinsky (1963)
model. The dynamic procedure has the advantage that the value of the model

constant need not be specified a priori, but rather is calculated as a function of

space and time as the simulation progresses. This feature makes the dynamic model

especially attractive for flows in complex geometries where it is difficult or impossible
to calibrate model constants.

The dynamic model has been highly successful in benchmark tests involving ho-

mogeneous and channel flows (c.f. Germano et ad. 1991, Moin et al. 1991, Cabot

and Moin 1991). Having demonstrated the potential of the dynamic model in these

simple flows, the overall direction of the LES effort at CTR has shifted toward an

evaluation of the model in more complex situations. The current test cases are basic

engineering-type flows for which Reynolds averaged approaches have been unable

to model the turbulence to within engineering accuracy. Flows currently under in-

vestigation include a backward-facing step, wake behind a circular cylinder, airfoil

at high angles of attack, separated flow in a diffuser, and boundary layer over a

concave surface. Preliminary results from the backward-facing step (Akselvoll and

Moin 1993) and cylinder wake simulations are encouraging. Progress toward the

airfoil simulations are discussed by Choi and by Jansen, while preliminary diffuser

simulations are discussed by Kaltenbach (all in this volume). The present paper
discusses progress on the LES of a boundary layer on a concave surface.

Although the geometry of a concave wall is not very complex, the boundary layer
that develops on its surface is difficult to model due to the presence of streamwise

Taylor-GSrtler vortices. These vortices arise as a result of a centrifugal instability

associated with the convex curvature. The vortices are roughly 1/3 of a boundary

layer thickness in diameter, alternate in sense of rotation, and are strong enough to

induce significant changes in the boundary layer statistics. Owing to their stream-

wise orientation and alternate sign, the Taylor-GSrtler vortices induce alternating

bands of flow toward and away from the wall. The induced upwash and down-

wash motions serve as effective agents to transport streamwise momentum normal

to the wall, thereby increasing the skin friction. As evidenced by the 1980 AFOSR-

Stanford conference on complex turbulent flows, Reynolds averaged models perform

poorly for concave curvature since the Taylor-GSrtler vortices are not resolved in
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these calculations. Historically the ad hoc corrections for the effects of curvature

have been unsatisfactory. The objective of this work is to investigate the effective-

ness of large eddy simulation and the dynamic subgrid-scale model for this flow.

The simulation targets the experimental data of Barlow and Johnston (1988).

This experiment is an ideal test case since a rather complete set of velocity statistics

are available for several streamwise stations.

2. Accomplishments

A preliminary large eddy simulation of a boundary layer along a concave surface

has been performed. The geometry and flow conditions were close to those studied

in the laboratory by Barlow and Johnston (1988). A limited comparison with the

experimental data has been undertaken. These items are discussed in more detail

below.

_.1 Numerical procedure

The computer code for this work is an adaptation of the code written by Choi and

Moin (1993). Boundary conditions have been generalized and the dynamic subgrid-
scale model has been added (see Kaltenbach, this volume). The incompressible

Navier-Stokes equations are solved in a coordinate space where two directions are

curvilinear and the third (spanwise) direction is Cartesian. Spatial derivatives are

approximated with second-order finite differences on a staggered mesh. A fully-

implicit fractional step algorithm is used for the time advancement.

\\ \\ \

1060

FIGURE 1. Computational domain. All dimensions are referred to the boundary

layer thickness measured at the location where the curx-ature begins (_f0). The radius

of curvature is R = 18.1/_0.
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Figure 1 shows the geometry for the present simulation. This geometry is simi-

lar to that used by Barlow and Johnston (1988) in their experimental study. The

boundary layer is allowed to develop along a flat entry section approximately 10/_0
in length, where 50 is the boundary layer thickness measured at the location where

the curvature begins. At this point the boundary layer encounters a constant ra-

dius of curvature bend that turns the flow through 750 . The ratio of the boundary

layer thickness to the radius of curvature, 5o/R, is 0.055. The domain extends/50

in the spanwise direction and 360 in the wall-normal direction. According to tile

measurements of Barlow and Johnston (1988), the cotnputational domain is just

wide enough to enclose one pair of streamwise Taylor-G6rtler vortices. Periodic

boundary conditions are applied in the spanwise direction while a no-stress condi-

tion is applied at the upper boundary. No-slip conditions are applied at the wall.

Turbulent boundary layer data from an independent simulation is supplied at the

inflow boundary (see Section 2.2 below). A convective boundary condition is ap-

plied at the outflow. The computational grid contains 178 × 40 × 32 points in the

streamwise, normal, and spanwise directions respectively. The mesh is stretched in

the wall-normal direction and uniform in the other two. The grid spacings, based

on wall units at the location where the curve begins, are Ax + = 98, Ay+in = 1,
and Az + = 16.

The flow conditions match those in the experiment. The momentum thickness

Reynolds number at the start of curvature is 1300. The experiment was conducted
in water and is therefore incompressible.

2.2 Inflow boundary data

A spatially-evolving simulation such as this one requires the specification of in-

stantaneous turbulent data at the inflow boundary. Although some level of approx-
imation must be made, accurate inflow data is desired to insure minimal transients

and realistic turbulence within a short distance downstream of the inlet. Fairly real-

istic instantaneous inflow data is generated via an auxiliary large eddy simulation of

a parallel flow boundary layer. The grid used for the inflow simulation is a truncated

version of that used in the main simulation. It extends only one boundary layer

thickness in the wall-normal direction and 5_0 in the streamwise direction. Periodic

boundary conditions are applied in the streamwise and spanwise directions, while

a no-stress boundary condition is applied at the upper boundary. The inflow sim-

ulation is run in parallel with the main simulation in a time-synchronous fashion.

At each time step, the velocity field is extracted from the central y - z plane in the

inflow simulation. This data is used as the inflow boundary conditions. In practice,
the inflow simulation can be either run at the same time as the main simulation

or run ahead of time and the inflow data stored on disk. The inflow simulation

increases the overall cost of the main simulation by less than 4%.

2.3 Preliminary results

Although the simulation was patterned after the experiment of Barlow and John-

ston, there is one important difference in geometry between the two. The experiment



94 T. $. Lurid

of Barlow and Johnston was conducted in a duct where the boundary layer thick-

ness, 60 was about 1/3 of the duct width. The duct was of variable cross-section
with the width tailored to minimize the streamwise pressure gradient on the concave

wall. The simulation can be viewed as taking place in a constant-width duct where

the boundary layer on the convex wall is not present.
Since the simulation was performed in a constant width duct, the boundary layer

will experience a streamwise pressure gradient in the vicinity of the onset of cur-
vature. The reason for this is that a normal pressure gradient is required in the

curved section to balance the centrifugal force associated with the streamline curva-

ture. The normal pressure gradient requires the pressure to be higher at the concave

wall and lower at the convex wall. The development of the normal pressure gradi-

ent in the region where the curvature begins induces an adverse pressure gradient

along the concave wall. This effect is shown in Figure 2. The pressure is seen to
increase abruptly along the concave wall in the vicinity of the onset of curvature.

The gradual drop in pressure over the entire length is due to acceleration of the
free-stream by the thickening of the boundary layer. Also shown in Figure 2 is the

concave wall pressure estimated from the experimentally measured velocity profiles.

By virtue of contouring the convex wall, Barlow and Johnston were able to achieve

a nearly constant pressure distribution.

0.2

0.1

o

_ -OA

,,Jr ............ : ......................................

-0.2 ..............
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Streamwise distance, x (cm)

FIGURE 2. Pressure distribution along the concave wall.

experiment. The curve begins at x = 0.

: simulation; • :

As discussed below, an inviscid analysis has been performed to determine tile

location of the streamline in the Barlow and Johnston experiment that lies near the

center of the duct. In future simulations this streamline will be used as the upper
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boundary where no normal velocity and no stress conditions will be applied. For
the present, a rough comparison with the data of Barlow and Johnston can still be

made provided that the region affected by the pressure gradient is excluded.

6 .... " J''' "" "'""""--'k\\ \ \ ....

"'"-\_,\\\--'---' f //---_\\\ \\\\\ \ \ _.

Ji/, ...... _'I/.z."l!!/III

Spanwise distance, z (cm)

FIGURE 3. Instantaneous velocity vectors in the cross-flow plane at the 60 °

(x = 142 cm) station. The label 6 indicates the boundary layer thickness.

Instantaneous velocity vectors in the cross-flow plane at the 60 ° (x = 142 cm)
station are shown in Figure 3. A pair of Taylor-GSrtler vortices is evident in the

lower 1/3 of the boundary layer. As in the experiment of Barlow and Johnston,
the vortices develop a few boundary layer thicknesses downstream of the onset of

curvature and are coherent from that point to the 60 ° station. The vortex diameter
is about 1/3 of the boundary layer thickness at the 60° station. The vortices enhance

turbulent mixing near the wall and increase the skin friction as a consequence. This

effect is shown in Figure 4 where the skin friction (presented as friction velocity)
is plotted as a function of distance along the wall. The curvature begins at x = 0.

The skin friction initially drops sharply as the boundary layer enters the curve, but

this effect is due to the adverse pressure gradient in that region. Following a quick
recovery, the skin friction undergoes a monotonic growth with streamwise distance.

After the flow has been turned through 300 (x = 71 cm), the pressure gradient is

minimal and the simulation results are expected to differ from the experiment only

through history effects. Indeed the simulation results are in reasonable agreement
with the experimental data between 30 o and 600 . It is also important to note that

the skin friction is well behaved near the inflow boundary and does not exhibit a
visible transient arising from the approximate turbulent inflow data.
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FIGURE 4. Computed skin friction. _ : simulation; • : experiment. The

curvature starts at x =- 0.

2._ Streamline for zero pressure gradient

The streamwise pressure gradient discussed above must be removed before a

detailed comparison can be made with the experimental data. An obvious way
to do this would be to simulate the exact geometry used in the experiment. The

drawback of this approach is that the boundary layer on the convex wall would have

to be resolved and consequently nearly twice as many grid points would be required.
A more economical approach is adopted here where the location of the streamline

that lies approximately midway between the two walls of the experimental geometry
is determined. This streamline forms the upper boundary in the simulation and

results in a pressure distribution very close to that found in the experiment.
The location of the streamline is found using a procedure analogous to that used

in designing the experimental facility. An inviscid analysis is used to determine

the pressure distribution along the concave wall of a constant-width duct. The

shape of the streamline that forms the duct convex wall is then iteratively adjusted
in an attempt to minimize the pressure gradient on the concave wall. Once the

optimal geometry is determined, the displacement thickness of the boundary layer
is estimated and the streamline position adjusted to allow for the thickening of the

boundary layer.

Figure 5 shows the streamline determined by the inviscid analysis. The cor-
responding pressure distribution along the convex wall is shown in Figure 6. For

reference, the pressure distribution for a constant-width duct is also shown in Figure
6. It can be seen that the pressure gradient is greatly reduced, but not completely
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FIGURE 5. Streamline location for minimization of the pressure gradient at the
wall. _ : streamline; .... : constant-width reference. Dimensions are in cm.

eliminated. The residual excursions could not be eliminated with a simple algo-
rithm that adjusts the streamline locally in response to the pressure deviation on

the opposite side of the duct. Nearly identical pressure excursions are also present
in the inviscid analysis used to design the experimental facility. For this reason no

attempts were made to further refine the streamline. The boundary layer displace-
ment thickness distribution was estimated from the experimental measurements

and the streamline was displaced away from the concave wall accordingly. The
final streamline will be used as the upper computational boundary in all future
simulations.

3. Future plans

Future work will focus on refining the simulations asld in making detailed com-

parisons with experimental data. The upper boundary location will be changed as
described above in order to minimize the streamwise pressure gradient. The mesh

spacings will be varied in order to determine the minimal resolution for which ac-

ceptable results are obtained. The spanwise extent of the domain will be enlarged
so that the spacing of the Taylor-GSrtler vortices are not imposed directly. Ideally
the spanwise extent should be large enough to support several pairs of vortices.

The spanwise length will be made as large a,s practical given the computer resource

constraints. Detailed comparisons will be made between the LES, experimental
data, and a simulation run with no subgrid-scale model. The latter will be used

to determine the influence of the subgrid-scale model in the overall accuracy of the
simulation.
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.Large-eddy slmulatlon of flow -- -
in a plane, asymmetric diffuser

By Hans-Jakob Kaltenbach

Recent improvements in subgrid-scale modeling as well as increases in computer

power make it feasible to investigate flows using large-eddy simulation (LES) which

have been traditionally studied with techniques based on Reynolds averaging. How-
ever, LES has not yet been applied to many flows of immediate technical interest.
This report describes preliminary results from LES of a plane diffuser flow. The

long terra goal of this work is to investigate flow separation as well as separation
control in ducts and ramp-like geometries.

1. Motivation and objectives

Flow separation is a fundamental phenomenon which occurs in many engineering
flow configurations such as airfoils, diffusers, and cascades. Prevention of separation

usually improves the performance of such devices by increasing pressure recovery,

enhancing lift, and decreasing total drag. Methods which delay or prevent sepa-
ration include passive devices like vortex generators and active systems which use
auxiliary power to modify the flow. Recent experiments (Katz et al. 1989, Seifert

et al. 1992, 1993, Obi et al. 1993) have shown that flow control strategies which

rely on adding small amounts of periodic disturbances (e.g. suction and blowing at
specific locations) can delay separation efficiently without consuming large amounts
of auxiliary power.

Investigation of unsteady control concepts using numerical simulation requires
a method which computes the spatial as well as the temporal evolution of the

turbulent fluctuations. Methods based on the Reynolds averaged Navier Stokes
equations have difficulty dealing with the unsteadiness which is essential for the

control concept. LES seems to be an ideal tool for studying unsteady control be-

cause experimental work has shown that the delay of separation is mostly due to the

creation of large-scale vortical structures which improve the entrainment of high-

speed fluid into separated zones (Katz et al. 1989). LES is very likely to adequately
describe this physical mechanism at a reasonable cost. Conversely, direct numer-
ical simulation (DNS) would be lather expensive at the Reynolds numbers under
consideration.

The use of generalized coordinates largely enhances the range of possible flow
configurations accessible for LES. Finite differences are more convenient to use

than highly accurate spectral methods for approximation of derivatives. Little is

known about the mutual dependency of use of the SGS-model in combination with

a numerical scheme with considerable dispersive properties like second order cen-

tral differences. One way of exploring this dependency consists of studying tile
sensitivity of the solution with respect to grid resolution.
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FIGURE 1. Computational domain for the plane diffuser in units of 8. Only each

4th of the wall-normal and each third of the streamwise grid lines are plotted.

The objective of this study is to perform large-eddy simulation of turbulent flow
in a one-sided diffuser. The results will be validated by comparison with the experi-

ment of Obi et al. (1993). Once the minimum resolution requirements for accurately

simulating this flow have been determined, periodic disturbances with various fre-

quencies and amplitudes will be added to the flow as was done in the experiment.
The final goal of this study is to understand the physics of flow control through

periodic forcing and to determine the parameters (location, frequency, amplitude)
that are most efficient in delaying flow separation.

2. Accomplishments

The DNS code of Choi & Moin (1993) has been modified to allow for simulation

of inflow/outflow configurations with either no-slip or no-stress conditions at the

upper boundary. A detailed description of the coordinate transformation and the
numerical scheme is given in Choi et al. (1992). The code solves the unsteady,

incompressible Navier-Stokes equations in generalized coordinates in two dimensions
and a Cartesian equidistant grid in the third (spanwise) direction. The fully-implicit

time integration scheme (Crank-Nicholson) uses Newton linearization along with

approximate factorization. The time advancement allows rather large time-steps
and CFL-numbers. The Poisson solver makes use of the spanwise periodicity of the

domain which allows a Fourier transformation in this direction. The remaining 2D

problems are solved by using LU decomposition for the first spanwise wavenumber
and an iterative solver for higher wavenumbers. The major part of CPU-time needed

for advancing the fractional step scheme by one timestep is spent on performing 3-4

Newton iterations per timestep. Depending on the spanwise resolution, the Poisson
solver consumes between 10 and 30% of the computational effort.

Unsteady data are specified at the inflow, and a convective boundary condition is

applied at the outflow. The upper and lower boundaries are no-slip walls. The data
to be specified at the inflow plane of the domain are created in an independent LES

of a fully developed channel flow. At each timestep, a cross-section of the velocity
field is stored on disk using data reduction to 4 Byte words in order to minimize

data storage and input/output time. These channel flow data are subsequently fed
into the code which simulates flow through a non-periodic duct configuration.

A simple version of the dynamic SGS model (Germano et al. 1991) has been

implemented and tested for a periodic channel flow. It makes use of least-square
contraction (Lilly 1992) in combination with spanwise averaging. The total viscosity
is constrained to be positive through a clipping operation. The test filter is applied



LES o/ plane di_u.,er /low 103

in the spanwise direction and along horizontal lines in the transformed space. No
filtering takes place in the wall-normal direction. The SGS-model increases the

CPU-time by less than 10% and has no significant effect on memory requirements.

A formulation of the SGS-model in generalized coordinates is given in the appendix.

The code has been used for simulation of turbulent flow through a plane, one-

sided diffuser. The dimensions of the computational domain are shown in figure

1. The diffuser geometry and the Reynolds number Reb = UbcS/v = 9000 match

the experimental configuration of Obi et al. (1993). Here, Ub denotes the bulk

velocity of the incoming fully developed turbulent channel flow of height 2/_. The
flow from the inlet channel of length 66 enters an asymmetric diffuser with an

expansion ratio of a = 4.7. The diffuser and the outlet channel extend over 426

and 526, respectively. The upper wall remains parallel to the inlet channel whereas

the lower wall is deflected by approximately 10 °. Both corners formed by the inlet

and outlet channels with the lower wall are slightly rounded. With a width of 126,

the aspect ratios of inlet and outlet channel are 1 : 6 and 1 : 1.28, respectively.
The experiment had much higher aspect ratios of 1 : 35 and 1 : 7.45 in order to

guarantee a two-dimensional core flow free from sidewall effects.

The grid spacing is based on an estimate for the skin friction coefficient as a

function of bulk Reynolds number as given by Dean; c._,b = 0.061Re_ "°'2s. For

Reb = 9000, this relation gives a value cl, b = 0.0063, which corresponds to ReT =

u,.6/v = 500. Therefore, a wall-unit in the inlet section of the diffuser is 0.0026.

Assuming that the flow in the outlet channel will finally evolve into a fully developed

channel flow, the wall-unit in the outflow section increases by the expansion ratio,

a, to 0.00946. Linear stretching of the mcsh sizes in the streamwise and wall-normal

directions accounts for this increase. The grid with Ax = 0.3756 (Ax + = 190) in
the inflow and Ax = 1.256 (Ax + = 133) in the outflow section has 124 streamwise

points. In the wall-normal direction, 64 points are distributed by using hyberbolic

tangent stretching. It should be noted, however, that estimates for grid spacing in
the outflow section based on wall-units are probably not very relevant because the

flow is partially separated. The proper spacing nmst be verified from sensitivity
studies.

For the present flow it would be highly desirable to use "zonal grids" for the

spanwise direction. This would allow accurate simulation of the inlet with a fine

spanwise grid and with increasingly coarser grids towards the diffuser outlet. How-

ever, the spanwise spacing Az has to remain constant throughout the domain in

the present code. The spanwise spacing must be chosen as a compromise between
the different requirements in the inflow and the outflow section. Distribution of 64

points over a spanwise extent of 126 results in _z + = 94 in the inflow and Az + = 20

in the outflow section. These estimates are based on Rer = 500, which might not

be reached everywhere in the actual simulation. The grid is fine enough to resolve

near wall streaks with a characteristic spacing of approximately 100 wall-units in

the diffuser outlet but certainly too coarse to realistically simulate the flow in the

diffuser inlet section. For the purpose of studying the effect of unsteady blowing
and suction on the pressure recovery in the rear part of the diffuser, the features
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FIGURE 2. (a) Pressure coefficient cv along the upper wall and (b) skin friction

cI based on centerline velocity at the inflow plane along lower (._) and upper
( ........ ) walls as function of streamwise distance from the inflow plane.

of the flow in the inlet channel might be of minor importance. However, this issue

must be tested by means of grid refinement studies.

An estimate of the quality of the simulated inlet flow can be obtained by com-

parison with Dean's empirical relations for skin friction and ratio of the centerline
to the bulk velocity. Dean's correlation Uc/Ub = 1.27Reb "°'°116 gives 1.14 for the

Reynolds number considered. Three channel flow LES have been carried out for
Reb = 9000 with spanwise spacings Az + = 12, 29 and 73 based on the actual wall

shear which changes significantly with the grid resolution. Only the finest case

reaches a cf,b = 0.0064 (Re_. = 510), which is close to the value derived from
Dean's relation. The other cases reach cl,b = 0.0054 (Rer = 465) and 0.0038

(Rer = 393). This means that the coarsest simulation which is used as database
for unsteady inflow underpredicts the skin friction by 40%. However, the values of

Uc/Ub = 1.12,1.09 and 1.10 do not differ much between the three cases, indicating
that the interior of the flow is well captured by all three simulations. The case with

the finest spacing is actually not too far from a DNS because the SGS-eddy viscos-
ity contributes less than 20% to the total viscosity. The plane averaged SGS-eddy

viscosity is larger than the molecular viscosity in 60% of the domain in the coarsest

case.

The inertial time scale r = 0.5h(x)/Ub(x) increases with the square of the expan-
sion ratio from the inlet to the outlet section, i.e. ro,t = a2ri,. Here, h(x) is the

diffuser height at location x. The same holds for the viscous time scale v,,,c = v/u2,.

which mainly determines the choice of the maximum timestep. Again - as for the

spanwise spacing - the choice of the timestep is a compromise between the very
different requirements of inlet and outlet section. Running the code with 10 time

steps per ri, corresponds to a timestep which is three times bigger than the viscous
timescale of the inflow but only one seventh of the viscous timescale of the outflow.

In order to obtain converged statistics, data have to be sampled over a period of
100 inertial time scales. Because the inertial timescale of the flow increases by a

factor of 22 from inlet to outlet rather long simulation times - of the order of 10000

timesteps - are required.
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FIGURE 3. Region with reversed flow. Shown are isolines of the contravariant

velocity component which is aligned with the horizontal grid lines. The grid lines
shown are a subset of the actual grid.

Preliminary results from a coarse grid simulation are shown in figures 2 to 5.

Data have been sampled over 300 inlet inertial timescales after running the code
for 1000 inlet timescales. Statistics are not fully converged, but the main features
of the flow seem to be established.

Figure 2 depicts pressure recovery along the upper wall and skin friction along
both walls. Negative values of c I behind the inlet corner mark the streamwise

extent of a first separation bubble. This separated zone, which is shown in more

detail in figure 3, was not reported by Obi et al. (1993). The flow separation close

to the inlet might be an artifact of the coarse spanwise resolution in the diffuser

inlet. This can be understood in the following way: the low value of skin friction

in the inlet channel indicates that the velocity profile is less full than expected for

the given Reynolds number based on centerline velocity. A less full mean velocity

profile arises because the turbulent shear stress is underpredicted. Less high speed

fluid from the channel core is transported towards the wall which makes separation

more likely to occur. Grid refinement studies will be carried out to clarify this point.

The skin friction approaches zero in the vicinity of the diffuser outlet. In this region
the flow seems to be close to separation. However, we do not find a zone of reversed

flow as for the first bubble. In accordance with this finding, mean profiles in the
experiment do not show significant backflow at the diffuser outlet.

Profiles of mean velocity and turbulence intensities change drastically inside the

diffuser. As described by Simpson (1985), relative high turbulence levels might be
found in regions with backflow. Figure 4 shows a strong increase of the streanl-

wise velocity fluctuation in the vicinity of the first separation bubble (x/_ ,._ 9).

Throughout the rear part of the diffuser, the turbulence intensities remain high

compared to the value of the mean velocity (figure 5). The scatter in these pro-

files is higher than in figure 4 because much longer sampling times are required in

the outflow section to obtain converged statistics. There is little evidence from the

mean flow profiles that the flow is separated at the diffuser exit.
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3. Future plans

Grid refinement studies will be carried out in order to see whether underprediction

of skin friction in the inlet channel has a significant effect on the flow inside the

diffuser. A detailed comparison with available experimental data as well as results

from simulations based on statistical turbulence models will be carried out. Once

the undisturbed flow is predicted well, oscillatory control of the diffuser will be

studied in order to see whether the same gains in pressure recovery are reached in
the simulation as in the experiment.

In addition to flow through a diffuser, flow separation at a corner formed by a

wall with a hinged rearward facing ramp will be investigated. This configuration

resembles the generic flap which is the subject of an ongoing experimental investi-

gation (Seifert et al. 1993). The computational domain will be designed such that

it matches the experimental configuration of Katz et al. (1989). The long term goal

of these studies, which are carried out in collaboration with Dr. I. Wygnanski and

Dr. A. Seifert, Tel Aviv University, is the improvement of high-lift devices such as
highly deflected flaps.

Appendix: The dynamic SGS-model in generalized coordinates

The dynamic model for residual stresses (Germano et al., 1991) requires compu-
tation of the Leonard term Li) and the deformation rate tensor S ij. One obtains

the scalar model coefficient through contractions of these tensors (and their filtered

counterparts). Several possibilities exist to formulate the model in generalized co-

ordinates. If the model formulation is based on a Cartesian system, the Cartesian

tensors LiJ and S i) have to be computed from the contravariant velocity compo-

nents. This procedure leads to moderately complex expressions for the components
of LO.

On the other hand, the model can be formulated in generalized coordinates. In

this case, contravariant as well as covariant components of strain-rate and Leonard

term _ij, _ij, A ij, Aij have to be evaluated. It turns out that this formulation with

certain assumptions leads to rather simple expressions for the Leonard term. This
will be shown in the following sections where the definitions

gi

x i

v i

il i

qi _ ju i
J

ci= _

Ox t

=_
oliJ =- gij j

are used.

Cartesian coordinate

generalized coordinate

Cartesian velocity component

contravariant velocity component

velocity component weighted with Jacobian (mesh volume)

derivative of Cartesian with respect to generalized coordinates

derivative of generalized with respect to Cartesian coordinates

contravariant metric coefficient weighted with Jacobian
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Starting from the Cartesian formulation for the Leonard term L ij = v'vJ - v'vJ,

where _ stands for filtering, the contravariant tensor can be written as

A_J= (c_)-'(c_)-'L _" = (cT)-'(c_)-'(v_-_- - _)

__

Under the assumption that _ changes only weakly over the distance corresponding
to the test falter width, it might be extracted from beneath the filter operator. This

leads to
AiJ (c_')-_ --_.,. ,_,,q__-'_q)(c_) %%(upu

= _(._'_ - _-_._)= (_' - _'_)

Thus, the Leonard term is computed in generalized coordinates from the eontravari-

ant velocity components in the same way as L ij from the Cartesian velocity com-

ponents.
For computation of the strain-rate, the use of non-conservative expressions for

derivatives leads to compact expressions. For the purpose of computing the SGS-

eddy viscosity, it is probably of little importance whether or not the derivatives
are formulated strictly conservative. The code conserves momentum as long as the

momentum fluxes over call surfaces are formulated with a "telescoping" scheme.

One obtains the eontravariant components E ij of the strain rate tensor from

_, = (c?)_,(c_,)_,__(o,," Ov")0y----_- +

where

1[/c.__lOvm Or"
= (c7)-'(c_')-'_.,,, o_----T+(c_')-'b-_,l

1 [[Cra.__l[cn._--l[c,._--I _3rn _on(cm_--l(cn'_--l{cm_ -1 ]

=_t_i, _jJ _pJ _-_xp +_ij _' 'q' b-_'

2_[(c_")-'_'J v_z_ 'c"'-'a'iOv"_= + _ J _ Ox'--"q"

v" = jc'_q t and v" = jc'_q °

has to be inserted because the code is actually formulated in terms of the weighted

velocities qi.
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On the large eddy simulation of

turbulent flows in complex geometry

By S. Ghosal

1. Motivation and objectives

Application of the method of LES to a turbulent flow consists of three separate
steps. First, a filtering operation is performed on the Navier-Stokes equations to

remove the small spatial scales. The resulting equations that describe the space-
time evolution of the 'large eddies' contain the subgrid-scale (sgs) stress tensor that
describes the effect of the unresolved small scales on the resolved scales. The second

step is the replacement of the sgs stress tensor by some expression involving the
large scales -- this is the problem of 'subgrid-scale modeling'. The final step is the

numerical simulation of the resulting 'closed' equations for the large scale fields on

a grid small enough to resolve the smallest of the large eddies, but still much larger
than the fine scale structures at the Kolmogorov length. In dividing a turbulent

flow field into 'large' and 'small' eddies, one presumes that a cut-off length 6 can be

sensibly chosen such that all fluctuations on a scale larger than 6 are 'large eddies'

and the remainder constitute the 'small scale' fluctuations. Typically, _"would be
a length scale characterizing the smallest structures of interest in the flow. In an

inhomogeneous flow, the 'sensible choice' for 8 may vary significantly over the flow

domain. For example, in a wall bounded turbulent flow, most statistical averages
of interest vary much more rapidly with position near the wall than far away from
it. Further, there are dynamically important organized structures near the wall on

a scale much smaller than the boundary layer thickness. Therefore, the minimum

size of eddies that need to be resolved is smaller near the wall. In general, for the

LES of inhomogeneous flows, we must consider the width of the filtering kernel
6 to be a function of position. If a filtering operation with a nonuniform filter

width is performed on the Navier-Stokes equations, one does not in general get
the standard large eddy equations. The complication is caused by the fact that a

filtering operation with a nonuniform filter width in general does not commute with
the operation of differentiation. This is one of the issues that we have looked at in

detail as it is basic to any attempt at applying LES to complex geometry flows. Our
principal findings are summarized in this report. For details the reader is referred
to Ghosal and Moin, 1993.

In the field of subgrid-scale modeling, a large effort was invested in research
on the dynamic localization model. The theoretical fundamentals have been set

out in detail in our last report (Ghosal, Lund& Moin, 1993). In this report, we
present some further results of tests performed oil the model. These tests are on

homogeneous turbulence, but tests on wall bounded flows have also been conducted

by other members of the LES group and will be presented elsewhere (see the report
by Cabot in this volume).

Lt 0
--.-". :-.,..:-_I'_'_NOT FILMED ............. '_' _' !
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2. Accomplishments

This section is divided into two parts. In §2.1, we summarize the theoretical work

on the derivation of the basic LES equations for flows requiring nonuniform grids.

In §2.2, some results from the ongoing tests of the dynamic localization model are

presented.

_.I The basic equations for the LES of turbulent flows in complez geometry

_.1.I Nonuniform filtering in one space dimension (definition)

Consider a field ¢(_) defined in the domain (-oo, +oo). A filtering operation

with a constant filter width A is defined by (Leonard, 1974)

= G ¢(.)a. (1)

where G is any function with domain (-oo, +oo) and endowed with the following

properties:

(i) G(-_) = G(_)

(ii) f+__ G(_)d_ = 1
(iii) G(_) --* 0 as [_[ --+ oo sufficiently fast so that all moments

(n >_ O) exist.
(iv) G(_) is very small (in some suitably defined sense) outside (-½, +½).

Some examples of possible filter functions are the 'top-hat' filter

1, if I¢1- ½; (2)G(()= 0, otherwise

and the 'Gaussian' filter

G(_) = _/_ exp(-2_ 2).
(3)

(For a discussion of the various types of filters used in LES, see Aldama, 1990.)
In situations where the domain might be finite or semi-infinite and a variable

filter width is desirable, the definition (1) can have many possible generalizations.

For example, a generalization of (1) when G is the top-hat filter might be

I /_+,_+(0
6(_)= (A+(t_)+ A_(_)) j(_,,,_(O ¢(r/)dr/ (4)

where A+(_) and A_(_) are positive functions and A+(_) + A_(_) is the effective
filter width at location '_'. For a finite or semi-infinite domain, A+(_) and A_(_)
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II
o

A

r
/

(8)

/_= f(=).

Here f(x) is a monotonic differentiable function such that

f(.) = -_,

(7)

-3
-1

FIGURE 1. The space z, with variable filter width 6(x), is shown mapped into a
space _, with constant filter width A, by the 'tan-hyperbolic map' f(x) = tanh -1 x.

must go to zero at the boundaries sufficiently rapidly so that (_ - A_(_), _ + A+(_))
is always in the domain of ¢.

A filtering operation with a nonuniform filter width (such as the one defined in

(4)) does not in general commute with the operation of differentiation. It may be

shown (Moin et al., 1978), for example, that with the definition (4),

_ _ - _¥h_ _ (_+ + __) o(_ + _+,_ + _(_- __) .

Thus, (5)

a¢ # _" (6)

One would like to believe that the right-hand side of (5) would be small for some

reasonable class of nonuniform filters, but this has never been conclusively demon-
strated. This lack of commutativity between filtering and differentiation causes

every spatial derivative operator in the Navier-Stokes equations to generate terms

that cannot be expressed solely in terms of the filtered fields. Therefore, a 'closure
problem' is introduced not only for the nonlinear terms, but for the linear terms

as well. To remedy this situation we first propose an alternate definition for the

filtering operation that is more general than (4).

Let _ be some field defined in a finite or infinite domain [a, b]. Any nonuniform

grid in the domain a < x < b can be mapped to a uniform grid of spacing A in the
domain [-(x_, +00] by means of some mapping function
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f(b) = +oo.

The nonuniform grid spacing 6(x) is clearly given by

A

f,(x)

(9)

(10)

(see figure 1). Clearly, if a (or b) is finite, (8)-(9) requires f' (a) (or f' (b)) to be

infinite so that 8(a) (or 8(b)) = 0. Since 8(x) can be regarded as a 'local' filter

width (see equation (16)), the filtering kernel becomes a Dirac delta function at
finite boundaries. This, of course, is an ideal limit that in a practical numerical

computation can be achieved only approximately. Thus, our stipulation that the

grid spacing be approximately equal to the filter width must break down when we
are sufficiently close to a wall because in practice one cannot have an infinitely dense

clustering of grid points at the boundary.
The filtering operation is defined as follows. Given an arbitrary function ¢(x), we

first make a change of variables to _ to obtain the new function ¢(_) = ¢(f-a (_)).

The function ¢(_) is then filtered using the usual definition (1) appropriate for

filtering on a uniform grid. Finally, we transform back to the variable x. Thus,

(11)

or, on using (7), we have

= X G K ¢(u)/(u)dy. (12)

Equation (11) or, equivalently, (12) is the definition we shall adopt for the filtering

operation with a nonuniform filter width. For reasons that will become apparent in
the next section, we will call this the Second Order Commuting Filter (SOCF). It
should be noted that the definition (4) used by Moin ei aL is quite different from

what one would get on substituting the expression (2) for the top-hat filter into

(12).
Example: In channel flow, one often uses the 'tanhyperbolic grid' (see for example
Moin & Kim, 1982. The mapping function discussed below is slightly different

from the version actually used in numerical computations since there one uses only

a finite number of grid points whereas our filters become infinitely sharp at the

walls).
f(x) = tanh -1 z (13)

where +1 > x > -1. (x = =i=l correspond to the channel walls.) From equation

(12), the filtering operation is defined as

= G(x, (14)
1
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FIGURE 2B. The shape of the filter function G when G is a Gaussian filter.

where

_(x, y) = KG - (y) (15)

with f(x) = tanh -] x. The function G(x, y) is plotted in figure 2A when G is a

top-hat filter and in figure 2B when G is a Gaussian filter. If the approximations

f(x) --f(y) ,_,f'(x)(x --y) and f'(y) ,_f'(x) for y near x are used in (15),we have

on using (10)

G(x,y) _ _(x) _ • (16)

Thus, as a first approximation, the filtering kernel G contracts in a self-similar

manner on approaching a finite boundary (see figures 2 A and B). However, the exact



116 S. Ghosal

formula (15) has an additional higher order effect that causes the filter function

to become asymmetric near the wall giving more weight to points nearer the wall
than further from it. The effect is most clearly seen in figure 2A.

_.1._ Calculation of the commutation error

Let us define the commutation error as

C[¢] = dx

Then it is easily shown that

c[¢1 = _ G _, _ (v)f (v) 1 - (18)

(The boundary terms are strictly zero due to the conditions (8) and (9).)
It is convenient to introduce the new variable ( such that y is expressed implicitly

in terms of ( through the equation

f(y) = f(x) + A( (19)

Equation (19) can be inverted by expressing y in a power series

= y0(() + Ayl(() +/x2y_(¢) +... (20)

where y0((), Vl ((), "'" are functions to be determined. On substituting (20) in (19)

and equating like powers of A, one obtains the expansion

A( A2f '' (2 +.... (21)
y=x+ f, 2f, s

(Note: When the argument of any function is omitted, we imply that the function
is evaluated at 'x'.) In terms of (, equation (18) may be written as

(22)

where y is given by (21) (the limits of integration are obtained on using (8) and (9)

in (19)). On expanding each of the factors in the integrand of (22) in Taylor series

in A and collecting terms of the same order, we have,

C[ff)] -_ clm-t- c2 A2 +"" = C1_-_" C2 _2 +''" (23)

where

f"¢ f:_cl- f,2 (,G((,)d(,, (24)
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= 2f'f"¢" f'f"'¢' 3f"2_'__
+ - +¢¢

c2 2f" ¢2G(¢)d(, (25)
oO

i t t t i

cl = clf and c2 = c2(f )2. Since G(ff) is symmetric, cl = cl = 0. Thus, the
commutation error C[¢] ,,, 0(62).

In an LES, the grid spacing is approximately equal to the 'filter-width', 6. If a

second order numerical scheme is used to represent the derivatives, the finite differ-

encing error is then of the same order as the error due to the lack of commutativity
of the differentiation and the filtering operations. Therefore, in an LES of an in-

homogeneous turbulent flow using a second order finite differencing scheme, the

filtering operation can be considered to commute with the differentiation operation

to within the accuracy of the numerical approximation. This is our most important
result from the point of view of practical application.

2.1.3 Spectral distribution of the commutation error

Let us substitute

¢ = _ exp(ikx) (26)

and (21) in (22). Then,

On expanding the integrand of (27) in a power series in A, we have

(27)

c[¢----!]=  -o(ka) + +...
¢ (28)

where -_'0, _1, ... contain A only in the combination kA.

Now A << 1, but kA may be as large as order one. Thus, we may neglect the
successive terms in (28) in comparison to the first term to obtain

c[¢]
,_--_Yo(kA). (29)

On evaluating 9V0(kA) from (27), we have

ts

(30)

where .T"is defined by

OGf(x) = _G(()exp(ix_)dG (31)
oo
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Equation (30) can also be written as

_-(k_) (32)

where _ is the local filter width as defined in (10). On expanding the exponential in

(31) in a Taylor series, we see by virtue of G(() being symmetric that _'(k_i) ,,- k$

so that IC[¢]/¢1 "_ (k6) 2 as shown in the last section.

Comparison with finite differencing errors is facilitated if the commutation error
is expressed as a 'modified wave-number'. If C[¢] were zero, we will have for the

function (26)

d_ = d--_¢= ik-'-_= ik_. (33)
dx dx

Therefore, if we define a 'modified wave-number' k' by

de ik'_, (34)
dx

then the departure of k' from k is a measure of the commutation error. On making

the change of variable (19) in (12), we obtain

O_
_,(x) = C(_)_/_(y)d(. (35)

oo

On substituting (26) in (35) and on using the definition (34), we obtain

k' f+_ G(_)exp(iky(x, sl, o, d., (36)

T = f:+_ G(()exp(iky(x, ())d(

where y has been expressed as a function of _ by inverting (19) for each fixed value

of x. Equation (36) is an exact result. A simplified asymptotic form is obtained

on substituting the expansion (21) in (36) and dropping all terms such as A(kA),

A2(kA). .. which are negligible compared to kA. Thus,

z=,_A? f::
(37)

Since G(() is a symmetric function, (37) simplifies to

-- = 1 - iA (3S)
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FIGURE 3A. The modified wavenumber (k') for the commutation error (_)

compared to that of the central differencing error (- - -). The symbols '×' are

the result of using the approximate fornmla (42). Here A = 2r/16, x = 0 (channel
center), and the maximum wavenumber is 7r//5 where 6 is the local filter width.

Example : Let us consider the top-hat filter defined by (2) together with the tan-

hyperbolic map f(x) = tanh -1 x. For this map, equation (19) can be inverted to
give

x + tanh A¢"
y=

1 + x tanh A(" (39)

On substituting (39) in (36), we obtain

j__ exp(tky)G((,) [(i+.¢t_.h_¢)_]
k' *+oo . [ l-tanh _A_

k •+_ • . , (40)
j__ exp(/ky)G(_, )d(,
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Same as figure 3A for x = 0.95 (close to channel wall).

with y given by (39). As a typical example, we consider a channel whose walls are at
x = 0 and x = 21r with 16 grid points in the spanwise direction. Thus, A = 2r,/16.

The integral (40) can be evaluated numerically. The result is shown in figure 3. The
modified wavenumber for the second order central difference scheme is given by

k' sin(k6)

k k6
(41)

Equation (41) is also plotted in figure 3 for comparison. The asymptotic formula

(38) can be evaluated analytically in the case of the tan-hyperbolic map and top-hat

filter. A straightforward computation gives

k' = k + (1--_'_) cot - 1 .
(42)
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Equation (42) is also shown in figure 3. The agreement of the asymptotic result

(42) with the exact result (40) is seen to be very good.

The asymptotic formula (38) can be written in the following convenient form:

t

kR= k, (43)

where _i is the local filter width given by (10),

(44)

F(x) = x
f+o_ {G({)sin(xi)d{"

a(i) cos(x¢)d 
(45)

and the suffixes R and I denote real and imaginary parts respectively. Thus, to a

very good approximation, the commutation error is seen to be purely dissipative

in nature in contrast to the central differencin_ error, which is dispersive. The
commutation error vanishes in regions where 6 = 0 (such as at the center of a

channel). From the example above, it is clear that for the top-hat filter,

k5 (k_62 ) (kS) _ (kS)*F(k_)=l--_-cot - 12 + 7---_ +'''" (46)

A simple calculation shows that for the Gaussian filter (3),

F(k_) = (k_i),._,2 (47)
4

2.1. 4 Higher order corrections to the commutation error

We have shown in the previous section that C[_,] _ _,Jc'0(kA) and _0(kA) ,,-

(kA) 2 at leading order in kA. In this section, we shall attempt to approximate

the commutation error C[_b] by an expression involving _ and its derivatives such

that the residual is of order (kA) 4. The procedure can be readily generalized to

represent _b'(x) in terms of _' (x) and higher derivatives of _;(x) such that the error

in the approximation is at most of order (kA) "_m where m is any positive integer.

We have, on expanding the exponential in (31) and noting that G(() is a sym-
metric function,

F F
ix a

9r(x) = ix _2G(_)d_ - 3--_- _4G(_)d_ +... (48)
o_ o_

Substitution of (48) in (30) gives

C[¢] = -(kA)2 (-_/, _2G(_)d_ + O(kA) 4. (49)
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From (35),

_b(x) = /// G(()_b (x + _, + ...) d(. (50)

On substituting _b = _k exp(ikx) in (50) and differentiating twice with respect to

x, we have

where

a = (2G(()d( (52)
oo

and A << 1 has been assumed. Equation (51) implies that

-k2 = + o(ka?. (53)

On substituting (53) in (49) we get

*l _ -rs

C[_] = o_Ad:_ (X) + O(kA) 4. (54)

Thus,
st _ -de f • 2d ¢

d--_ = d"_- + af 7_ "d-_xi + O(kA)4" (55)

The procedure can be continued to extend the accuracy of the representation to any

order in kA. Equation (55) can also be written in terms of the local grid spacing

8(x) as follows:

dx - dx _ + O(k_)4" (56)
\ /

Equation (56) was established only for the function (26). However, it is clearly valid

for any linear superposition of functions of the type (26), that is, any function that

admits a Fourier representation.

_.1.4 Generalization to three _pace dimensions

These results can be generalized to three space dimensions (see Ghosal and Moin,
1993 for details). Let us consider curvilinear grids defined by the co-ordinate sur-

faces

H(x) = constant (57)

where x are rectilinear co-ordinates in physical space. Let us also introduce a new

'computational space' X through the map

X=H(x) (58)
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FIGURE 4A. Decay of energy in a simulation of the Comte-Bellot and Corrsin

experiment with 483 grid points. Large scale energy (--); sgs energy (k) (- - -),
as predicted by DLM(G). This is compared with an identical computation with the

DLM(C) (+), the DM ( ...... ), and with the model turned off"(-----). Experimental:
resolved energies (e); subgrid energies (a)

which maps the physical space domain into R s meshed with a uniform grid of
spacing A. The filtering operation is now defined as

6(x) = _-_ G -

where J(x) is the Jacobian of the transformation (58).

It can be shown that for the general three dimensional filter (59), equation (54)
takes the form

026
C_[¢] = --aA2Fk,,p Ox,,,OXp + O(IklA) 4 (60)

where

rk,np = hm,jq(H(x))hp,q(H(x))H),_(x) (61)

and h is the inverse of H. Further, an expression for C_[¢] in terms of _ casl be
written down to any order in A. Thus,

Ok,/, (a_ 2= - _A rk,.Om, +.. ")6. (62)

_.2 Tests of the dynamic localization model

Two versions of the dynamic localization model (DLM) were introduced in last

year's Annual Research Briefs (Ghosal, Lund & Moin, 1993). The first of these
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FIGURE 4B. The spectra at three times for the same computation as in figure 4A.

DLM(G) (_); DM (- - -); DLM(C) (+); no model ( ...... ). The solid circles,
squares, and triangles are the experimental values at the three experimental points

in figure 4A. The initial conditions are chosen so that the spectra at the earliest

time matches the experiment.
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FIGURE 5A. Time dependence of energy in a forced simulation of homogeneous

isotropic turbulence at infinite Reynolds number on a 323 grid using the DLM(G).

Energy per unit volume in the resolved scales (_); subgrid-scale energy (- - -);

Total energy ( ...... ).

(which we will call the 'constrained' dynamic localization mo.iel or DLM(C)) con-

strains the Smagorinsky coefficient to be nonnegative and therefore does not exhibit

the phenomenon of backscatter - the (locally) reverse transfer of energy from the

subgrid to supergrid scales. The second formulation (which we will call tile 'gen-

eral' dynamic localization model or DLM(G)) removes this restriction. However,
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FIGURE 5B. Equilibrium spectrum in a forced simulation of homogeneous isotropic
turbulence at infinite Reynolds number on a 323 grid. Kolmogorov's five-thirds

law would correspond to a horizontal straight line with an ordinate equal to the

Kolmogorov constant C_ m 1.5. DLM(G) (_); DLM(C)(- - -); DM ( ...... ).
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FIGURE 5C. Fraction of backscatter in a forced sinmlation of homogeneous isotropic
turbulence at infinite Reynolds number on a 323 grid using DLM(G). Volume av-
eraged rate of energy transfer from subgrid to supergrid scales as a fraction of the

net transfer (_); Fraction of points experiencing backscatter at a given instant
of time(- - -).

the generality is gained at the cost of added computational expense. The so called

'volume-averaged' version of the dynamic model which can be rigorously derived

as a special case of the variational formulation (Ghosal, Lund & Moin, 1993) will
be simply referred to as the dynamic model (DM). It is useful only for flows with
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homogeneous directions.
Previous tests had shown (Ghosal, Lund & Moin, 1993) that while DLM(C) and

DM used in a 323 LES simulation of the Comte-Bellot and Corrsin experiment

(Comte-Bellot and Corrsin, 1971) gave excellent predictions, the results obtained

with DLM(G) were not as satisfactory. This discrepancy was more thoroughly

investigated. It was found that at a resolution of 323, the subgrid-scale energy (k)

was almost equal to the total energy in the LES field. As such a situation is not

fully consistent with the basic assumption of LES that the resolved scales carry
most of the energy, the simulation was repeated on a more refined (483) mesh.

At this resolution the total resolved energy is about thrice the subgrid-scale en-

ergy, and the performance of the DLM(G) is greatly improved. The performance

of DLM(C), DLM(G,) and DM are compared in figure 4 starting with identical ini-
tim conditions consistent with the experimental data at the initial time. All three

models are seen to give comparable results in good agreement with the experiment.

The result of running the simulation with the model turned off is also shown in the

same figure. The crucial role played by the model in these simulations is apparent.
This was followed up with a simulation of forced homogeneous isotropic turbu-

lence at infinite Reynolds number using a 323 grid. The forcing was provided by

the simple artifice of resetting the six modes corresponding to k = (=t:l, +l, =kl)

(k is the wavenumber vector) to fixed values at the end of each time-step. The
achievement of steady state was monitored by plotting the energy as a function of

time and also by looking for time independence in the shape of the spectra. Fig-

ure 5A illustrates the extent to which a 'steady-state' was achieved during a run

using the DLM(G). Though a plateau was reached in the total energy, some oscil-
lations remained. These could probably be reduced by running the simulation for

a longer time, but part of it might be an artefact of the forcing scheme. If a strict

Kolmogorov spectrum was achieved, the sgs energy would be

_o_

k = C,,e2/_ _S/3d _ = 3_ .,2/3_.-2/3 (63)

where e is the dissipation rate, _, is the wavenumber magnitude at cutoff, and

C_ _-, 1.5 is the Kolmogorov constant. In our simulation, _m = 14 (the number of

full energy shells) and e _ 0.07. If these numbers are substituted in (63,) we find

k _ 0.03. It is reassuring to note that the computed sgs energy (see figure 5A) is

within a factor of two of this figure. (Of course, an accurate quantitative prediction

of subgrid-scale energy cannot be expected from a large eddy simulation.)

The quantity e-2/3_5/3E(_), where E(_) is the energy spectrum and e is the sgs

dissipation, is plotted in figure 5B for runs using each of the three models. No time

averaging has been performed, so therc is some sampling fluctuations especially at
the low wavenumbers. All three models show good agreement with Kohnogorov's

law with a Kolmogorov constant close to 1.5. The rising 'tail' in the DLM(G)

simulation at high wavenumber appears to be real since the high wavenumber part

shows negligible fluctuations among different samples. On the other hand, the

DLM(G) appears to give a better plateau at intermediate wavenumbers at a value
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very close to C_ _ 1.5. Again, this behavior was seen when the simulation was

repeated with a different initial spectrum, so the effect is probably real and not just
an accidental sampling fluctuation.

The percentage of 'backscatter' is shown in figure 5C using two different measures.

The solid line is the rate of transfer of energy from the subgrid to supergrid scales
(integrated over the volume of the box) as a fraction of the total transfer. The

dashed line is the fraction of points engaged in this 'backscatter' of energy at a

given time. The results on backseatter can be tested using a DNS database of

a high Reynolds number simulation of homogeneous turbulence, but this has not

been done yet. However, Piomelli et al. (1991) found, using a DNS of channel

flow at Re = 3300, that the fraction of backscattered energy is about 10-20 percent
while the fraction of backscattering points is about 20-30 percent. These numbers

depend on the type of filter used. The figures quoted here are for the 'box filter'

(see figure 9 in the paper of PiomeUi et al.) which is what we are using as our
'test-filter'. Figure 5C is roughly consistent with Piomelli et al.'s results. These

simulations were repeated using a more refined (483) mesh. None of the above

results were changed in any significant way.

If one has to choose a model for an LES of a complex flow, then, based solely on

these tests, the DLM(C) will perhaps be the model of choice since it is the simpler

of the two available local models and gives results that are just as good as the more
elaborate DLM(G). The extra effort invested in modeling backscatter does not seem

to significantly improve predictions of quantities of practical interest. However, in

more complex flow situations where backscatter is known to play an important role,
the DLM(G) might turn out to be the preferred model. This issue will be settled

in the near future as the results of applying these theories to complex flows become
available.

3. Future plans

It is expected that these ideas will be useful in the near future in the context of

the application of the dynamic localization model to LES of complex flows.
An explicit knowledge of the nature of the filtering operation was not needed in

the past in sgs modeling. However, all models in the 'dynamic model' category rely
on an explicit 'test' filtering operation (which is supposed to be self-similar to the

grid-level filter) to extract useful information about the subgrid scales. Thus, the

issue of the commutativity of the filtering and differentiation operations is important

not only for providing a firm theoretical basis for LES in complex geometry, but
also for practical calculations which make use of the dynamic model.

The DLM should be applied to progressively more challenging flows to evaluate its

performance. Faster and more efficient algorithms for solving the relevant integral
equations need to be examined.

I would like to thank Dr. Nagi Mansour for providing tile basic code that was

modified to do some of these tests and for his patient help in teaching the author

to use it. I would also like to thank Dr. T. S. Lund for reviewing the manuscript
and offering valuable suggestions.
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Dynamic localization and second-order

subgrid-scale models in large
eddy simulations of channel flow

By W. Cabot

1. Motivation & objectives

The dynamic subgrid-scale (SGS) model (Germano et al., 1991; Lilly, 1992) has

been applied successfully in the large eddy simulation (LES) of flows with relatively

simple geometry and physics, e.g., in homogeneous flow (Moin, et al., 1991) and in

channel flow (Germano et al., 1991; Cabot & Moin, 1993). In these flows a global

dynamic coefficient is determined from averages over one or more homogeneous

directions, which generally gives well behaved results (i.e., positive eddy viscosities,

or, at least, positive net eddy plus molecular viscosities). But for arbitrary, complex

geometries, no global homogeneity may exist, precluding this averaging procedure.

The dynamic localization (DL) model of Ghosal, Lund &: Moin (1993) addresses this

problem by fitting local dynamic coefficients with a global minimization procedure.

However, this model, like all local dynamic SGS models, results in persistent points

or regions of negative eddy viscosity that become numerically unstable. Ghosal et

al. (1993) have proposed to alleviate this problem either (1) by constraining the

dynamic coefficient (and eddy viscosity) to be non-negative or (2) by limiting the

time that a point can have negative eddy viscosity by evolving an auxiliary equation

for the residual SGS kinetic energy k. When k is forced to zero by a persistently

negative eddy viscosity, the eddy viscosity also vanishes. Both of these procedures

with the DL model were found in homogeneous flow to give stable numerics and to

give results in good agreement to those using global averaging and to experiments
(Ghosal et al., 1993; Ghosal, this volume). The objective here is to test the DL

model in a wall-bounded channel flow for numerical stability and accuracy of results.

Algebraic stress models (cf. Gatski &: Speziale, 1993) suggest that the model for

the residual SGS Reynolds stress and scalar flux should generally have terms com-

prising most of the unique products of the resolved strain (S) and rotation (R)

tensors with S and the resolved scalar gradient. The standard dynamic SGS model

uses a simple (Smagorinsky) base model for the residual Reynolds stress, which is

made proportional to S, and down-gradient base models for residual scalar fluxes;

these correspond to the lowest, "first-order" terms in algebraic stress models. Tem-

poral scaling terms in these base models are formed from the magnitude of the

resolved strain rate. While this is appropriate for simple shear flows, it may not

be appropriate for more complicated flows (relevant to geophysical and astropiays-

ical probleias) that include any combination of shear, rotation, buoyancy, etc. OIl

the other hand, the coefficient in the dynamic SGS model readily adjusts itself to

different flow conditions and may adequately take account of these effects without

the need for more complicated base models. Cabot (1993) has begun to test the
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dynamic SGS model in buoyant flows (Rayleigh-B6nard and internally heated con-

vection) with and without buoyancy terms explicitly included in the scaling terms

of the base model; no great differences were found in LES results for the different

base model scalings. The second objective in this work is to test base models with

additional, "second-order" terms (e.g., S 2 and RS for the residual Reynolds stress).

These terms have been found to improve large-scale flow predictions by k-e models

in the presence of rotation and shear (Gatski & Speziale, 1993). Second-order base
models will be tested here in the LES of channel flow with and without solid-body

rotation and compared with results from the standard first-order base models to

determine if there axe significant differences or improvements in results that would

warrant the added complexity of the second-order base models.

2. Accomplishments

2.1 Dynamic localization 8ubgrid-scale model_ in channel Flow

2.1.1 The constrained model

The dynamic localization (DL) model was implemented in a pseudospectral chan-

nel flow code (cf. Kim, Moin & Moser, 1987). The procedure was tested using a

Smagorinsky base model for the trace-free (*) part of the residual SGS Reynolds

stress at the resolved scale (denoted by - ),

r_ - (u-q-ft'./-_i_'j)* -_ -2v,Sij = -2Cz-X2lSlS_j, (la)

and at a coarser test scale (denoted by ^),

Ti"_ -- (u-_.uj - _i[j)* _- -2P, Sij = -2CA,21SISij, (lb)

where the local coefficient C(x) is constrained to be _ 0 to ensure numerical stability

(model "DL+"). The strain rate tensor Sij -- (ui,j + uj,i)/2, and its magnitude

IS I =- (2SijSij)l/2; A, _ are the effective filter widths of the resolved and test fields,
defined as some average of the grid spacings in each direction. The coefficient C

is solved by the iterative global minimization procedure described by Ghosal et al.

(1993). By using the coefficient field from the previous time step, only two or three
iterations were needed per time step to converge the minimization to acceptable

accuracy (< 1% error in the L 1 norm); most of the computational expense of the

procedure results from the many additional filtering operations that are needed.

Also, because the code is pseudospectral, terms involving the spatially varying

eddy viscosity must be computed explicitly, unlike the terms with uniform molecular

viscosity, which are computed implicitly. For a plane in the channel, the locally

computed dynamic coefficient has extrema about 10 times the plane average. Even

in low Reynolds number simulations, this causes the time step to be limited to
several times lower than the limit from the convective CFL number.

A low Reynolds number simulation (with friction Reynolds lmmber Rer -- Ur_/V

= 180, where _ is the channel half-width and the friction velocity ur = I_dU/dy[ 1/2
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at the walls for mean streamwise velocity U and wall-normal direction y) was per-
formed for a channel with streamwise, wall-normal, and spanwise dimensions of

47r × 2 × 4r/3 (in units of 6) on a 32 × 65 × 32 grid. Filtering and dynamic minimiza-

tion was performed only in homogeneous horizontal planes. A localized real-space

("tophat") filter was used that employed a trapezoidal integration over adjacent

points. The effective ratio of test to resolved field filter width _/A was taken to

be 2 in these simulations, although T. Lund (private communication) later showed

that the correct (unidirectional) filter width ratio should be v/6 for trapezoidal in-

tegration (but 2 for integration with Simpson's rule). The issue of how one properly
combines the unidirectional filter width ratios into the effective filter width ratios

for non-uniform grids (e.g., Scotti, Meneveau & Lilly, 1993) or for two-dimensional
filtering is still not settled.

As found in simulations of homogeneous flow, constraining the dynamic coefficient

to be non-negative, while stabilizing the numerics, causes the mean eddy viscosity
(vt) from the DL+ model to be about twice that found from the same base model

(Eq. [11) with plane averaging (model "DAI"). (In the interior, (vt) is found to be

about half the molecular viscosity v in the DA1 model.) However, the final large-

scale statistics (mean streamwise velocity U, and resolved Reynolds stress (-_-_)
and velocity fluctuation intensities Ui,ms) are almost indistinguishable between the
two cases (see Fig. 1) and are in good agreement with the well resolved direct

numerical simulation (DNS) of Kim et al. (1987) computed on a 128 × 129 × 128

grid. The insensitivity in this flow to the SGS model is also a consequence of the

small contribution to the total (uv) by the residual SGS component (about 20% very
near the wall to < 10% in the interior). But note in Figure 1 that a "coarse DNS"

(computed at the LES resolution with no SGS model) gives quite poor results for U,
which is seen to be about 15% lower than in the well resolved DNS, and equally poor
results for resolved turbulence intensities and Reynolds stress are obtained when
compared with filtered DNS results. Note that, in general, when r't is increased in
plane-averaged models, U increases and Urms decreases.

2.1.2 Auxiliary one-equation models

Retaining negative local values of the dynamic coefficient C requires that their
persistence be limited by use of an auxiliary equation for the residual SGS kinetic

energy k =_ Tii/2. When persistent negative eddy viscosities use up all the local
SGS kinetic energy, one wants the eddy viscosity to turn off. The base model for
the residual SGS Reynolds stress is now given in terms of k as

rij _ -2vtSij = -2CAkl/2Sij ,

T,*j "-'-2_,_ij =-2C£K'/2_i),

where K = Tii/2. The governing equations for the k and K are

k,t + (k_i),i = --Sijr_ - di,i - c + uk,ii ,

K,t + (K_i),i = -_iiTi3 - Di,i - E + uK, ii,

(2a)

(2b)

(3a)

(3b)
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FIGURE 1. (a) Mean streamwise velocity as a function of dist_'.nce from the wall y,,,

(in wall units: U + = U/u,-, y+ = ywUr/V), and (b) resolved rms velocity intensities

and Reynolds stress for ( -- ) DNS (Kim et al., 1987), ( .... ) LES with the
DA1 model, ( ----- ) coarse DNS, and ( ........ ) LES with the DL+ model. The
DNS data are filtered in (b). The first three curves are nearly indistinguishable

except for Urms in (b).
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where the residual SGS dissipations,

133

¢ = t/(u_,Jui,j --ffi,j_i,j) "" Cek_/2/A, (4a)

E = 11 i,j - ui,jui,J) "_ Ce K3/2

and the residual SGS diffusive fluxes,

(4b)

di = -(p + ujuj/2)u i + (_ + _1_j/2 + 5k13)_i + _jrj*, "_ CdAkl/2k,i, (5a)

Di = -(p + ujuj/2)u i + (_ + ujuj/2 + 5g/3)ul + ujTfi _ Cd,_IQ/2K,, , (5b)

are modeled by analogy with standard k-_ models for large scales. In general, the

DL procedure is used to determine the local values of C, Cd, and Ce by globally

minimizing the residuals of the computable quantities £ij = Tij - ?ij, D) - d_,., and

E - _" with their model expressions in equations (3-5) above. In this formulation,

the pressure field _ must be computed and saved at each time step.

An alternative formulation is given by Ghosal et al. (1993), who write from equa-
tions (3) and (5)

(Di - dJ),j =- [(£ii,t + uj£ii,/- u£ii,jj)12 + _ijT_. - "S_] + (Ku I - k_i),j . (6)

The non-diffusive terms in the square brackets are incorporated in the expression

for E - _', and only the last, remaining terms are used for Dj - 4" In this formu-

lation, the terms in (6) with £ii = 2(K - k) must be computed and saved at each

time step. Note that the dynamic coefficients from either formulation are Galilean

invariant. At this time it is not known how this rearrangement of terms affects the

model coefficients in channel flow applications. However, S. Ghosal (private com-

munication) has pointed out that the formulation of the residual dissipation used

here, unlike that of Ghosal et al. (1993), has the unphysical property of vanishing
in the high Reynolds number limit (u ---, 0).

A low Reynolds number LES (with the same setup and parameters as described in

the previous subsection) was initiated using this ("DLk") model. All terms in (3a),

except the molecular viscosity term, are integrated explicitly in the numerical code.

For real space filters, k and _ are positive semi-definite by definition. In the DL

procedure, C_ is therefore constrained to be non-negative. For points where diffusion

occasionally causes k to become negative, an artificial source term is substituted

for the right-hand side of (3a) to drive the point to zero at the next time step,
and the eddy viscosity is taken to be zero. Although there is no direct constraint

on the sign of Cd, in most cases it is also constrained to be non-negative in order

to ensure the realizability of k. However, its unconstrained interior values were

found to be almost 50% negative with no preferred sign in the mean, so that the

mean constrained diffusive eddy viscosity (CdAkl/2) _ 20u is probably greatly

overestimated. Near the wall, the unconstrained values of Cd are finite, but small,
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FIGURE 2. Near-wall behavior of the mean dynamic dissipationcoefficientfor the

k-equation in channel flow using (_ ) A_ and ( .... ) A as the effectivefilter

width. Also the mean residual SGS dissipationrate, {_) = {C, k3/2/_e), and {k).

and almost entirely positive. It will be interesting to compare the results using

Ghosal et al.'s (1993) alternative expression for Ca.

At first, the filter width ratios _/A for equations (2), (4), and (5) were assumed

to be all the same. It was found, however, that constrained C_ from the DLk model

became largely (90%) zero near centerline in the flow, giving very small values

of /¢) there. An alternative definition for effective filter width was tried for C_

(by analogy with wavenumbers) as the harmonic mean of the unidirectional filter

widths, A[ 2 = _]i Z_ -2; this causes the effective filter width ratio _//ke to be

nearly unity (due to the small grid spacing in the wall-normal direction, for which

no explicit filtering occurs) instead of 2. This results in very few zero points and

a mean value of C_ that varies smoothly throughout the channel. A comparison of

CdA and C_/A_ is shown in Figure 2. In both cases, C_/A{_) approaches the wall

as nearly y_3, where yw is the normal distance from the wall. This nearly balances
b 3 k3/2 the wall so that (_)

the approximate (but slightly su -)Yw behavior of near
rises relatively slowly near the wall. Note that the near-y 2 behavior of k found at

the wall is not guaranteed by the differential equations, which only require that k

vanish linearly at the walls.

The extremely rapid rise of Ce/_, at the wall leads to severe time step con-

straints since the dissipation term is integrated explicitly and the CFL number

(cekl/2/Ae)m_x_t goes as yw 2 near the wall. The time step _t must be reduced by
more than 100 times that used for the standard DA1 model. This makes the use
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of the DLk model prohibitively expensive unless one can perform the integration
of the e-term in (3a) implicitly. This can be accomplished with a finite-difference
channel code, which is presently being developed.

In fact, statistics have not been generated for this LES due to its great compu-

tational expense. However, instantaneous large-scale statistics look quite good (see
Fig. 3) for this model. The mean eddy viscosity was found to be about twice that
from the plane-averaged dynamic SGS model. Nevertheless, its prediction of the

near-wall streamwise velocity fluctuation intensity (Fig. 3b) appears to be some-
what better than from the plane-averaged SGS model. The value of the residual

SGS kinetic energy k can be compared with that computed from the residual of a

well resolved DNS field (Kim et al., 1987) when filtered to the LES scale. This is

shown in Figure 4, where it is seen that k from the DLk model is generally about
twice the actual value in the interior, but dips inappropriately near the wall below

DNS values. Note, however, that neither is the SGS model expected to give an ac-

curate prediction of k, nor should the incompressible LES be particularly sensitive

to the exact value of k, since it acts only as a scaling term in the eddy viscosity.
Another version of the one-equation DL model has been considered in which

q = (rii) 1/2 = (2k) 1/2 is used in the auxiliary equation. This ("DLq") model was

originally proposed by Cabot (1993) to ensure the exact k cx y_ behavior near the

wall. (It has been found, meanwhile, that this behavior is approximated reasonably
well using the DLk model.) Equation (3a) governing k becomes

q[q,t + (qui),i] = 2cAqI-SI2 - q[(cd£Xq + u)q,i],i + (cdAq + u)(q,iq,i) -- _, (7)

where factors of 21/2 have been absorbed in the new dynamic coefficients, c and

ca. One cannot divide through by q in (7) because of the term u(q,iq, i). However,

the combination e' = ¢ - u(q, iq,,) vanishes as y_ at the wall, so that ¢'/q vanished
linearly there and can be modeled by c_q2/Ac. Dividing (7) through by q now gives

q,t + (qui),i = 2cAISI2 - [(cdAq + tJ)q,,], i + Cd_(q,iq,i) -- ceq2/£Xe . (8)

While this equation is good in exhibiting no extreme near-wall behavior in any of its

terms and guaranteeing the right wall behavior of k, it also presents some problems,

mathematically and in implementation. When q _ 0+, the first term on the right-

hand side of (8) can remain finite (positive or negative) whereas it vanishes in (3a).
This mathematical point still needs to be resolved.

Determining the coefficient c_ from e' = e - u(q, iq, i) with the DL procedure has

proved unsuccessful because ¢ (depending on ui) and the term in q (an independent

variable) do not precisely balance near the wall, causing cc/A, _ y23 again, instead
of y_l. A suitable proxy to c' for computing c_ with both tile right wall and interior

behavior has not been found. A low Reynolds number LES was performed with

completely ad hoc models of CdA : max(O.O32Aa,O.4u/u_) and c_/A¢ = 0.4/Z._d,

where Ad I = A -l + 0.4y_1. The choice of numerical coefficients can be chosen

to give fair agreement with k = q2/2 computed from the DNS; in Figure 4, it is
seen that this particular guess gave values of k about half those from DNS. The
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FIGURE 3. (a) Mean streamwise velocity as a function of distance from the wall

(in wall units), and (b) resolved rms velocity intensities and Reynolds stress for

( -- ) DNS (Kim et al., 1987), ( .... ) LES with the DA1 model, ( ----- ) LES
with the DLk model (from an instantaneous field), and ( ........ ) LES with the (ad

hoc) DLq model. The DN$ data are filtered in (b).
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energy computed from ( _ ) DNS, and predicted by ( ....
and ( --.-- ) the ad hoc DLq model.
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The ratio of mean residual SGS kinetic energy to mean resolved kinetic

) the DLk model

inappropriate dip near the wall also generally occurs for q as it did for k from the

DLk model. The simulation was found to be numerically stable and to give about

as good agreement with the DNS results as with other SGS models (see Fig. 3).
The mean eddy viscosity is found to be slightly lower than from the DLk model,
about 80% larger than from the plane-averaged DA1 model.

2.2 Second-order dynamic subgrid-scale models in channel flow

In LES of channel flow with the plane-averaged dynamic SGS model, a second-

order base model ("DA2") has been used instead of equation (1) (model "DAI"),
having the form

r'i -_ -2C1A2]SISiJ + 2C2A2[aikskj -F AikSki - 2SiiTr(_3)/Tr(_2)], (9)

and for the residual SGS flux hi for a passive scalar 0,

hi = tgui --8_ i __ --CelA2ISIS,i + 2Co2A2 [Ait0,t -_,i(VS. S- VS)/(V0. V0)], (10)

The tensor Aij is defined

Aij =- Sij + alRij, Rij =- (ui,j - uj,i)/2 - 2f/ta2eijk, (11)

where f_k is the system rotation. The lattermost terms in the square brackets in

(9) and (10) are included to make the second terms in the model orthogonal to the
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first and hence dissipation-free. In practice, the trace is also generally subtracted

from (9). This general form is suggested by lowest-order solutions of algebraic stress

models (cf. Gatski & Speziale, 1993). The prescribed constants, al and a2, depend

on one's favorite model coefficients; e.g., for the second-order model derived by

Gatski & Speziale, al _ 1-3 and a2 _ 1-2 for commonly used k-_ model constants.

This type of large-scale Reynolds stress model has been shown to perform well in

flows with rapid solid-body rotation and shear (Speziale, Sarkar & Gatski, 1991).

In initial tests, the more general second-order model was used for (9), in which

strain-strain terms (S _) and rotation-strain terms (RS) are kept separate in the

dynamic procedure,

nj _ -2C1A21SISiJ -t- 2C2A2(RikSkj - SikRkj)

+ 2C3A 2 [2SikSkj -- 2"SijWr( _3)/Tr( _2 )]"

(12)

It is found that Cs predicted by the dynamic procedure in channel flow (with _k =

0) is typically about half C2 and comparable to C1 (see Fig. 5a), suggesting that
the RS term may be more important than the S 2 term. Meneveau, Lund & Moin

(1992) and Lund & Novikov (1993) also found that, of all the unique products of

S and R (including S by itself), the RS term was the most highly correlated with

_-ij computed from DNS channel flow fields. Another interesting note is that these
second-order base models for rij in either (9) or (12) with the trace retained and

for hi in (10) give the correct (no-slip, fixed scalar) near-wall behavior for all of

their components (since CIA2,Col A2 _ Y_ but C2,sA2,Ce2 A2 cx y_), which was

not the case using only the first terms. The trace of either (9) or (12) also returns

the model for the residual SGS kinetic energy used by Moin et al. (1991) for LES

of compressible flow.
The simultaneous solution of three coefficients in (12) is much more expensive

than the two in (9) because many more filtering operations need to be performed, so

it was decided to use (9) and (10) in the actual LES of low Reynolds number channel

flow (with the same setup and parameters described in the previous subsection).
The constants al and as were simply taken as unity (even though ax _ 2 is suggested

by Fig. 5a). The values of the coefficients returned by the dynamic procedure are
shown in Figure 5b: in the interior of the channel we see that C2 _, 2C1 and that

C02 _ C01 ,_ C2 for Pr = 0.71. Large-scale statistics from the LES of channel

flow using the DA2 model are compared in Figure 6 with those from LES using

the DA1 model and from DNS. The mean eddy viscosity from the DA2 model

((cazx21 l)) is found to be nearly the same as that from the DA1 model (about
half that of molecular in the interior). And there is not a great deal of difference

between the LES results using first- or second-order SGS base models, except that

the agreement of resolved Urm, (and thus the resolved kinetic energy) with that

from the DNS is somewhat better for the second-order base model, while the mean

streamwise velocity is slightly lower like the results using the DLq model (cf. Fig. 3).

The DA2 model was then tested in LES of channel flow rotating about its spanwise

axis, which stabilizes the upper wall and destabilizes the lower wall (cf. review by
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FIGURE 5. Mean dynamic coefficients in channel flow for the second-order base

model (a) in Eq. (12), and (b)in Eqs. (9) and (10).

Moin & Jimendz, 1993). Again, the standard low Reynolds number case was used

(corresponding to a mass-flux Reynolds number Rein =--2Umg/U = fs__ Udy/t, ,._

5,400) arid for a higher Reynolds number (Rem ,_ 12, 000) in a 3rr × 2 x r box (ill
units of 6). The rotation rates in mass-flux units were Ro,,, = 21"_g/U,n _, 0.21. A
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Case SGS model _/A Rein RoT. ur,/u,, u_/u,-

1 1st order (DA1) 2 5,443 0.217 1.19 0.76

2 2nd order (DA2) 2 5,432 0.218 1.19 0.76

3 1st order (DA1) 2 12,150 0.202 1.16 0.81

4 2nd order (DA2) 2 12,035 0.204 1.15 0.82

5 2nd order (DA2) v/6 11,685 0.210 1.14 0.83

TABLE 1. LES of rotating channel flow for different SGS base models: u_-i and
2 2 2 Ou_2 are the friction speeds at the upper and lower walls, and u_ = (u_l + ur2)/_.

better resolved LES at the higher Re,, was performed in a 4_r x 2 × 7r box on a

48 × 65 × 32 grid. This LES also used the correct effective filter width ratio of x/6 for
physical space filtering with integration by trapezoidal rule, instead of the value of

2 used in the rest of LES reported here. It did not give appreciably different results.

The parameters and resulting asymmetry of the friction speeds measured at the two

walls are summarized in Table 1. The results agree quite well with LES results of

Squires & Piomelli (1994), who used the standard DA1 model. The asymmetry in

the friction speeds induced by the rotation is seen to be almost independent of Rein,

although the overall asymmetry in the mean streamwise velocity profiles (Fig. 7a)

is a little more pronounced. There is again virtually no differences in large-scale

statistics using the DA1 as opposed to the DA2 models. About the only noticeable

difference is in the shape of the mean residual SGS Reynolds stress (rl2) (Fig. 7b):
for the DA2 models it is larger in the interior of the flow and less concentrated at

the lower, rotationally unstable wall than for the DA1 models. However, (r12) is

still an order of magnitude less than the resolved Reynolds stress here, which is in

part why the large-scale flow is rather insensitive to these differences.

3. Future plans

The dynamic localization model will be implemented in a finite-difference channel

code. Terms in the auxiliary governing equation for the residual SGS kinetic energy

that are large in near-wall region will be integrated implicitly with much larger

time steps than possible with the explicit integration required in the pseudospectral

code. This will allow us to generate steady-state statistics in channel flow LES and

perform more extensive tests for this local dynamic SGS model.

Second-order base models for the plane-averaged dynamic SGS model will be

tested in the LES of uniformly and differentially rotating thermal convection includ-

ing additional buoyancy terms as suggested by algebraic stress models (cf. Schu-

mann, 1991), and the results will be compared with previous DNS results (Cabot

et al., 1990; Cabot & Pollack, 1992) and those from LES performed with the first-

order (Smagorinsky) base model. We will again attempt to determined whether the

added complexity and computational expense of higher-order, more sophisticated

base models is needed in more physically complicated flows or, as it appears so far,

that the self-adjusting nature of the dynamic procedure allows one to obtain the

same result with simple, relatively inexpensive base models.
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FIGURE 7. The asymmetric vertical distribution of (a) mean streamwise velocity

and (b) mean residual SGS Reynolds stress in the LES of rotating channel flow with

Re,,, _ 5,400 and 12,000 and using the DA1 model ( _, case 1; --'--, case 3)

and, hardly distinguishable in (a), the DA2 model ( .... , case 2; ........ , case 4)

(see Table 1).
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Toward large eddy sirnulat'ion

of turbulent flow over an airfoil

By Haecheon Choi 1

1. Motivation and objectives

The flow field over an airfoil contains several distinct flow characteristics, e.g.

laminar, transitional, turbulent boundary layer flow, flow separation, unstable free-

shear layers, and a wake. This diversity of flow regimes taxes the presently available

Reynolds averaged turbulence models. Such models are generally tuned to predict a

particular flow regime, and adjustments are necessary for the prediction of a different

flow regime. Similar difficulties are likely to emerge when the large eddy simulation

technique is applied with the widely used Smagorinsky model. This model has not

been successful in correctly representing different turbulent flow fields with a single
universal constant and has an incorrect near-wall behavior.

Germano et al. (1991) and Ghosal, Lund &: Moin (1992) have developed a new

subgrid-scale model, the dynamic model, which is very promising in alleviating many
of the persistent inadequacies of the Smagorinsky model: the model coefficient is

computed dynamically as the calculation progresses rather than input a priori.
The model has been remarkably successful in prediction of several turbulent and
transitional flows.

"vVe plan to simulate turbulent flow over a "2D" airfoil using the large eddy sim-

ulation technique. Our primary objective is to assess the performance of the newly
developed dynamic subgrid-scale model for computation of complex flows about air-

craft components and to compare the results with those obtained using the Reynolds

average approach and experiments. The present computation represents the first

application of large eddy simulation to a flow of aeronautical interest and a key

demonstration of the capabilities of the large eddy simulation technique.

2. Accomplishments

2.1 Code modification

For the simulation of the flow over an airfoil, we have modified the direct numer-

ical simulation code of Choi, Moin & Kim (1993), which was successfully applied

to simulation of turbulent flow over longitudinal riblets. The code uses generalized
coordinates in two dimensions and a Cartesian coordinate in the third direction.

The code is based on the unsteady, three-dimensional, incompressible Navier-Stokes

equations along with the equation of continuity. The fully implicit time integra-

tion scheme, which uses an approximate factorization method in conjunction with

Newton-iterative scheme, allows rather large time-steps and, therefore, reduces tile

1 Present address: Seoul National University, Korea
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computational effort for solving the Poisson equation. The code makes use of a

multi-grid method in order to accelerate the convergence rate of the Poisson solver.

The convective outflow boundary condition is used at the flow exit, and the

unsteady "turbulent" inflow condition is similar to that developed by Lee et al.

(1992). No-stress or uniform velocity boundary conditions are applied at far-field
boundaries far from the airfoil surface. Periodic boundary condition is used in the

spanwise direction. Arbitrary velocity boundary condition on the surface of the
airfoil is also incorporated in the code for future flow control applications.

The C-type mesh configuration is used in this study (Thompson et al. 1985).

This grid is better than the O-type grid for flows with massive separation because

the wake region after bluff bodies can be more adequately resolved with the C-type

grid. The boundary condition along the branch-cut in the C-type grid is treated
implicitly, i.e. periodic boundary conditions are applied along the branch cut, which
makes the code significantly more complicated. The commonly used ezplicit inter-

polation technique using adjacent grids near the branch cut deteriorates the time
accuracy due to the time-lagging nature of the explicit method. However, the im-

plicit boundary condition along the branch cut used in this study maintains the
overall time accuracy. The use of explicit interpolation method along the branch

cut does not accurately predict the Strouhal number for the flow over a cylinder,

while the implicit boundary condition predicts the Strouhal number very well com-

pared with the experimental results (see section 2.2).
The development of the dynamic subgrid-scale model (Germano et al. 1991;

Ghosal, Lurid & Moin 1992) is the key inducement for the undertaking of the

present computation. The dynamic subgrid-scale model is incorporated in the code

(in generalized coordinates).

2._ Code verification

In order to verify the code, we first applied it to the laminar flow over a circular

cylinder at the Reynolds number, Re = uo_d]u = 100, where uo¢ is the upstream ve-
locity, d is the cylinder diameter, and u is the kinematic viscosity. At this Reynolds
number, the flow is periodic, and experimental data are available for comparison.

The flow domain and grid system are shown in figure 1. The flow domain cov-
ers about 25 and 20 cylinder diameters in the streamwise and normal directions,

respectively. A uniform velocity field, u = uo_ and ,, = 0, is prescribed at t = 0.
Here, u and v are the velocity components in the streamwise (x) and normal ('y)

directions, respectively. An initial random disturbance with magnitude of 0.01u_

is imposed at the flow field in order to induce vortex shedding behind the cylinder.

Figure 2 shows the time history of the streamwise velocity at several points behind
the cylinder. After a transient period (tuoJd _ 0 ,,_ 100), the flow behind the

cylinder shows a periodic behavior. The Strouhal number is calculated from figure

2, S = d/(Tuo_) = 0.163, where T denotes the period of the flow oscillation. This
result is in a very close agreement with the experimental result by Williamson

(1989), where S = 0.164 (see figure 3).
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FIGURE 1. Computational domain and grid system. The C-type mesh configura-

tion is used for flow over a cylinder. The branch cut is located along the centerline
of the cylinder wake.
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FIGURE 9. Time history of the streamwise velocity at several points (x = 2.4d)

behind the cylinder: _ , y = -0.21d; .... , y = -0.52d; ........ , y = -1.1d;

----- , y = -2.1d. Here, the position x = y = 0 corresponds to the center of the
cylinder.

It is interesting to note that the periodic behavior behind the cylinder was not

found when an explicit interpolation method using adjacent points was used as
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FIGURE 3. Variation of S with Re: -- , the least square curve fit from

WilLiamson (1989), S = A/Re + B + CRe, where A = -3.3265, B = 0.1816, C =

1.6 x 10-4; e, the present calculation.

the branch-cut boundary condition. It turns out that the use of the explicit inter-

polation method along the branch cut indirectly prescribes zero pressure-gradient
across the branch cut. Apparently, the absence of oscillating pressure force across

the branch cut precludes vortex generation behind the cylinder.

3. Future plans

Future research plan includes two phases.

Pha_e 1: Laminar test cases will be computed and compared with experimental

results. We will also compare laminar flow solutions of the NACA 0012 airfoil with

those of a fiat-plate airfoil for non-zero angles of attack in order to investigate the
effect of the finite thickness of the airfoil on laminar separation characteristics.

Phone _: We will first simulate turbulent flow over an airfoil with zero angle of attack

using the dynamic subgrid-scale model and compare the solution with experimental
results and with those by Reynolds averaged turbulence closure models. The angle
of attack for maximum lift (or for maximum lift-drag ratio) will be considered

subsequently.
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1. Motivation and objectives

Historically, large eddy simulations (LES) have been restricted to simple geome-
tries where spectral or finite difference methods have dominated due to their efficient

use of structured grids. Structured grids, however, not only have difficulty repre-
senting complex domains and adapting to complicated flow features, but also are

rather inefficient for simulating flows at high Reynolds numbers. The lack of ef-

ficiency stems from the need to resolve the viscous sublayer which requires very
fine resolution in all three directions near the wall. Structured grids make use of
a stretching to reduce the normal grid spacing but must carry the fine resolution

in the streamwise and spanwise directions throughout the domain. The unneces-

sarily fine grid for much of the domain leads to disturbingly high grid estimates.
Chapman (1979), and later Moin & Jimen_z (1993), pointed out that, in order to

advance the technology to airfoils at flight Reynolds numbers, structured grids must

be abandoned in lieu of what are known as nested or unstructured grids. Figure 1
illustrates the ability of an unstructured mesh to refine only the near wall region.
Note the large number of points near the wall (where the fine vortical features need

better resolution) and the coarseness in all directions away from the wall (where the
scales are much larger). The important difference between this approach and the

usual structured grid stretching is that the number of elements used to discretize

the spanwise and streamwise features of the flow is reduced in each successive layer
coming off the wail. This is due to the fact that the elements not only grow in the
normal direction, but in the other directions as well. This greatly reduces the total
number of points or elements required for a given Reynolds number flow.

freestream

wall

(b)
FIGURE 1. An unstructured grid places a large number of points at the wall but

remains coarse in the freestream. The full mesh is shown in part (a) while a zoom
of near wall corner is shown in part (b) to illustrate the refinement.
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To estimate the number of unstructured grid elements required to simulate an

airfoil, Chapman used flat plate skin friction analogies and a computational domain

extending one-fifth chord in the spanwise direction to obtain

Relc "s (1)
N = 0.2_---_+

where A+ and A+ are the grid resolutions in the streamwise and spanwise directions
on the body surface and Rec is the Reynolds number based on the chord, c and the
freestream velocity, ui,t. This estimate assumes that the fine resolution near the

wall is carried out for 10 layers to accurately resolve the viscous sublayer. Then,

outside of the viscous sublayer, the elements grow rapidly in all three dimensions

with increasing distance from the wall as described above. Moin _ Jimendz suggest

that current subgrid-scale models should allow A + = 200 and A + = 50. When these
values are substituted into (1), we observe that approximately 1.2 × 106 elements

will be required for airfoils with a chord Reynolds number of Rec = 106 and 80 × 106
elements for the more practical flight Reynolds number of Rec = 107. Simulations

of this scale are possible on today's supercomputers.
The use of unstructured grids, coupled with the advances in dynamic subgrid-

scale modeling such as those made by Germano et al. (1991) and Ghosal et al.

(1992), make LES of an airfoil tractable. The finite element method can efficiently
solve the Navier-Stokes equations on unstructured grids. Although the CPU cost

per time step per element is somewhat higher than structured grid methods, this
effect is more than offset by the reduction in the number of elements.

2. Accomplishments

2.I Computer code

The proposed finite element formulation is based on the work of Jansen et al.

(1993), who used the method to model the compressible Reynolds-averaged Navier-
Stokes equations. These simulations were performed by time marching a transient
simulation to a steady solution. The code was optimized for rapid convergence

without regard for time accuracy. For the current work, greater attention has been

given to the efficient time accuracy before application to LES. Both explicit and

implicit time integration methods have been developed and tested. Currently, the
formulation has two implicit methods (first-order for acceleration towards a steady

state and third-order for time accurate integration) and a higher order accurate

family of explicit time integration methods.

I_._ Time step estimates

There is, in general, a tradeoff between explicit methods, which are cheaper per

time step, and implicit methods, which require fewer time steps due to the avoidance
of the stability limits. It can be shown through methods similar to Chapman's

spatial estimate that the viscous stability limit leads to the following time step

limit
A+ T (2)

A'_- CI,.,,Re c
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where T is the time it takes the mean flow to cross the chord of the airfoil (T =
c/uinf) and Cym,, ' is the maximum of the coefficient of friction.

There is also a stability limit associated with advection. The time step associated

with this stability limit is a little more difficult to estimate since it depends on both

the mean flow advection, u, and the length of the element in the flow direction, A,.
These quantities vary throughout the flow. Assuming a logarithmic velocity profile
and geometric stretching of the elements coming off the wall, it can be shown that

the critical point occurs in the buffer layer near y+ = 10. Respecting this advective
stability limit leads to the following advective time step limit

where

(3)

0.6A +
+2 (4)

Ay

For the problem proposed above, A+ = 200 and A+ is expected to be near 1.0,

which makes t_ _ 120. This time step corresponds to a At+ _ 120, which will not

yield sufficient accuracy. Therefore, this stability limit is not likely to have any
bearing on the size of the time step.

Since we are solving the compressible Navier-Stokes equations, a third time step
restriction must be considered. The acoustic stability limit can be estimated as
follows

A? = _A_ (5)

where

= 2"0M CV/-¢-_,.
A,+ (6)

where a is the acoustic speed and M = uinf/a is the freestream Mach number.

Clearly, _ is less than one, making this the most restrictive stability limit.

If A + is equal to one, it can be shown that A_' corresponds to a At+ = 1.0. Cur-

rent channel flow LES simulations have had success with A + = 10.0. Assuming that

this temporal resolution is adequate for the airfoil, the acoustic time step stability
limit will be far too restrictive. The implication of this result is that compressible
formulations must provide an implicit treatment of the advective term. Further-

more, special care must be taken to show that the method is not adversely affected
by simulating the flow at very high acoustic CFL numbers. For the conditions
described above, typical flows lead to the following acoustic CFL estimate

aAt 10.0 70.7

(7)

which exceeds 350 for a Mach number of 0.2.
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FIGURE 2. Unstructured grid for flow around a cylinder at Red = 100, M = 0.2.
This mesh contains 4004 elements which corresponds to 2056 nodes for a linear

space.

2.3 Preliminary simulations

To verify that the modifications to the code achieve time accuracy, the method

was applied to laminar flow over a cylinder at Red = 100, M = 0.2. This flow

leads to periodic vortex shedding and, therefore, gives some measure of a method's

temporal-accuracy. The unstructured triangular mesh is shown in Figure 2. Note
the local refinement near the cylinder and in the wake. The lift coefficient obtained

by using pieeewise linear shape functions in space and time can be seen in Figure
3. The Strouhal number for this discretization is 0.167. The acoustic CFL for this

problem is 20.0.

3. Future plans

8.1 Time integration

The cylinder problem is not an adequate test of the fornmlation's ability to run

at very high acoustic CFL numbers. A channel flow at a higher Reynolds will be
run to determine the upper limit for the acoustic CFL number. Should problems

arise, a change to an incompressible formulation may be appropriate. Such finite
element formulations are currently being used by Hauke _: Hughes (1993) and Simo
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FIGURE 3. Periodic vortex shedding illustrated through the lift coefficient.

_z Armero (1993) for laminar flows. The drawback to an incompressible formulation

is that many interesting airfoil problems require the consideration of compressibilityeffects.

$._ Mesh generation

The mesh requirements of the airfoil problem exceed existing mesh generation
capability. In order to stretch the elements to the level described above and to reduce

the number of elements with distance from the wall, new mesh generation techniques
must be developed. It is crucial that elements do not have angles which approach

180". An algorithm to accomplish this goal for airfoils is under development in

collaboration with Tim Barth of NASA Ames. This algorithm also should provide

smoother element shape changes than those observed in Figure 1, resulting in higher
quality solutions.

3.3 Subgrid-scale modeling

The dynamic models developed at CTR need to be implemented into the un-

structured grid code. This is not expected to be too difficult, especially for higher
order elements which have a built-in test grid (the corner nodes).

3.4 Further speeding up of the code

The code has been largely optimized for marching to steady state solutions. It

may be possible to further optimize the code for time accurate calculations. The

code currently runs at 440 MFLOPS on the Cray C90 and 25 MFLOPS per processor
on the Thinking Machines CM5. These execution rates are quite fast, but some

savings in the number of FLOPS per time step per element may be attainable.
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3.5 Airfoil simulation

Upon the successful completion of these tasks, the code will be applied to air-

foil problems with the ultimate target being airfoils at or near maximum lift; see
Coles and Wadcock (1979). These flows commonly have separation bubbles that

are difficult to predict with Reynolds-averaged Navier-Stokes equation models and,

therefore, present an opportunity to demonstrate the utility of LES approaches.
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Investigation of the asymptotic state of
rotating turbulence using large-eddy simulation
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1. Motivation and objectives

Study of turbulent flows in rotating reference frames has long been an area of

considerable scientific and engineering interest. Because of its importance, the sub-

ject of turbulence in rotating reference frames has motivated over the years a large

number of theoretical, experimental, and computational studies (e.g., Greenspan

1968, Bardina et al. 1985, Jacquin et al. 1990, Mansour et al. 1991). The bulk of

these previous works has served to demonstrate that the effect of system rotation

on turbulence is subtle and remains exceedingly difficult to predict.

A rotating flow of particular interest in many studies, including the present work,

is examination of the effect of solid-body rotation on an initially isotropic turbulent

flow. One of the principal reasons for the interest in this flow is that it represents the
most basic turbulent flow whose structure is altered by system rotation but without

the complicating effects introduced by mean strains or flow inhomogeneities. The

assumption of statistical homogeneity considerably simplifies analysis and compu-
tation.

For an initially isotropic turbulence, it is well known that system rotation inhibits

the non-linear cascade of energy from large to small scales. This effect is manifest in

a reduction of the turbulence dissipation rate and associated decrease in the decay

rate of turbulence kinetic energy (e.g., see Traugott 1958, Veeravalli 1991, Mansour

et al. 1992). An issue considerably less resolved, however, is the development of

a two-dimensional state in rotating homogeneous turbulence. Both computations

and experiments have noted an increase in integral length scales along the rotation

axis relative to those in non-rotating turbulence (Bardina et al. 1985, Jacquin et

al. 1990). Increase in the integral length scales has been thought to be a prelude

to a Taylor-Proudman reorganization to two-dimensional turbulence. However, it

has also been shown using direct numerical simulation (DNS) of rotating isotropic

turbulence (Speziale et al. 1987, Mansour et al. 1992) that in the limit of very rapid

rotation, turbulence remains isotropic and three-dimensional. In fact, Mansour et

al. (1992) showed that the evolution of rapidly rotating turbulence was accurately

predicted using rapid distortion theory (RDT). Furthermore, Mansour et al. also

1 University of Vermont

2 NASA Ames Research Center

3 Ecole Centrale de Lyon
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showed that the RDT solution violates a necessary condition for occurrence of a

Taylor-Proudman reorganization.
It is worth noting that as is typically the case with DNS, the computations

performed by Speziale et al. (1987) and Mansour et al. (1991,1992) were performed
at low Reynolds numbers. In rotating turbulence at low Reynolds number, the
effects of viscous decay progressively reduce the Rossby number and drive the flow to

the RDT limit. Thus, other mechanisms for obtaining two-dimensional turbulence,

e.g., through non-linear interactions which occur on a turbulence time scale, are
precluded using DNS, and evolution of a two-dimensional state, therefore, requires

significantly higher Reynolds numbers than can be attained using DNS.
An issue closely connected to development of two-dimensional turbulence in rotat-

ing flows is the existence of asymptotic self-similar states. The issue of self-similarity

is a topic central to studies of turbulent flows (e.g., see Chasnov 1993). A similar-

ity state is characterized by the predictability of future flow statistics from current
values by a simple resealing of the statistics; the resealing is typically based on
a dimensional invariant of the flow. Knowledge of the existence of an asymptotic

similarity state allows a prediction of the ultimate statistical evolution of the flow
without detailed knowledge of the complex, and not well understood, non-linear

transfer processes.
Large-eddy simulation (LES) is ideally suited for examination of the long-time

evolution of rotating turbulence since it circumvents the Reynolds number restric-
tion of DNS. The drawback is, of course, that it requires use of a model to parame-

terize subgrid-scale stresses. However, large-scale statistics are relatively insensitive
to the exact form of the model, and alternative approaches, i.e., laboratory experi-
ments or direct simulations, are simply not feasible for examination of the long-time

evolution of rotating flows.

The principal objective of the present study has thus been to examine the asymp-
totic state of solid-body rotation applied to an initially isotropic, high Reynolds

number turbulent flow. Of particular interest has been to determine (1) the degree of

two-dimensionalization and (2) the existence of asymptotic self-similar states in ho-

mogeneous rotating turbulence. As shown in §2, development of a two-dimensional
state is very pronounced; much more so than observed in previous studies using
DNS. It is also shown that long-time evolution of quantities such as turbulence ki-

netic energy and integral length scales are accurately predicted using simple scaling

arguments.

2. Accomplishments

2.1 Simulation overview

In the present study, the filtered Navier-Stokes equations for an incompressible
fluid were solved in a rotating reference frame:

V.u=0 (1)

Ou 1

_- + u. Vu = --Vp+ veV_u- 2flxu.P
(2)
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In (1) and (2), u is the velocity vector, p and p the fluid pressure and density,
respectively, and 11 is the rotation vector. For purposes of discussion, the rotation

vector is considered to act along the z or "vertical" axis, n = (0, 0, f_). An eddy
viscosity hypothesis was used to parameterize the subgrid-scale stresses. In this

work, the spectral eddy viscosity of Chollet & Lesieur (1981) was modified for
rotating turbulence

= (3)

where re0 is the "baseline" viscosity and f(c_) a function accounting for the reduction

of ve by system rotation. The baseline viscosity, ve0, from ChoUet _: Lesieur, is

where km is the maximum wavenumber magnitude of the simulation and E(k, t)
is the spherically integrated three-dimensional Fourier transform of the co-variance

_(ui(x,t)ui(x + r,t)) ((.) denotes an ensemble or volume average). The reduction
mve is expressed using f(a)

where

= 2[(I+ 1]
3_ 2 (5)

8fZ2

= 3E(k.)k (8)

(Cambon, private communication).

The initial energy spectrum of the simulations was of the form

1_ u0_

where s is equal to 2 or 4, Cs is given by

s [1 (_)2]exp -_s (7)

3½(s+l)

C, = t/=
Vlr (8)

and kp is the wavenumber at which the initial energy spectrum is maximum. In

this study, simulations with s = 2 and s = 4 were performed, corresponding to the
initial energy spectra with a low wavenumber form proportional to either k 2 or k 4.

Because the principal interest of this work was examination of the long-time evo-

lution of rotating turbulence, it was necessary to use as large a value of kp as possible

in order that flow evolution not be adversely affected by the periodic boundary con-

ditions used in the simulations; adverse affects occurring when the integral length

scales of the flow become comparable to the box size. Another important con-
sideration in these simulations was the aspect ratio of the computational domain.
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Because of the rapid growth of turbulence length scales along the direction of the

rotation axis, it was necessary to use a computational box which was longer along
the rotation axis than in the other directions. Preliminary calculations of rotating
turbulence on cubic domains had shown an adverse affect of periodicity because

of the rapid integral scale growth along the rotation axis. Numerical experiments
showed that it was necessary to use to a computational box which was four times

larger along the rotation axis than in the directions orthogonal to the rotation vec-
tor. Four times as many collocation points were used in the vertical direction in

order to avoid any effects of grid anisotropy at the smallest resolved scales.

Simulations were performed using resolutions of 96 × 96 × 384 and 128 x 128 × 512

collocation points. The governing equations (1) and (2) were solved using the

pseudo-spectral method developed by Rogallo (1981). The statistical evolution of
the flow using either resolution was essentially the same, and, therefore, only the
results from the higher resolution computation are reported in this brief. The

maximum physical wavenumber of the 128 × 128 x 512 computations was 95 (for a

computational domain having total volume of 87rs). The initial root-mean-square
velocity fluctuation u0 in (7) was equal to unity and kp = 75. Following Chasnov

(1993), the initial energy spectrum was set to zero for wavenumbers greater than
93 to allow the subgrid-scale eddy viscosity to build up from zero values. For each

spectrum type, i.e., low wavenumber part proportional to k 2 or k 4, simulations were

performed with _ = 0, 0.5, and 1.0.

g.g Results

The instantaneous power-law exponent (i.e., the logarithmic time derivative) of

the mean-square velocity fluctuation, (u2), is shown in Figure 1 for each rotation

rate and spectrum type used in the simulations. The time axis in Figure 1 and

following figures has been made dimensionless using the eddy turnover time in the

initial field
r(O) = L,,(O)/(u2) '/2 (9)

where L,(t) is the velocity integral scale defined at time t as

_r fo k-lE(k't)dk (10)
L,(t) = 2 fo E(k,t)dk

In isotropic turbulence, L_ is two-thirds the usual longitudinal integral scale mea-

sured in experiments (see also Chasnov 1993). Throughout this work, "k 2 spectrum"
refers to an initial energy spectrum E(k) with low wavenumber part proportional

to k2 while "k 4 spectrum" refers to an initial E(k) with low wavenumbers propor-
tional to k 4. For both spectrum types, the characteristic effect of system rotation

in reducing the decay rate of (u 2) is evident in Figure 1. Furthermore, it is also

clear from the Figure that the value of the decay exponent for non-zero rotation

rates at long times is independent of _, depending only on the form of the initial

energy spectrum.
It is possible to predict the exponents in Figure 1 if one assumes that the asymp-

totic scaling of (u2/ is dependent on the form of E(k) at low wavenumbers and
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FIGURE 1.

turbulence.

f_ = 1.0, k 2 spectrum; ----- , l'_ = 0, k 4 spectrum; m.__

, f/= 1.0, k 4 spectrum.

Time development of the power law exponent of (u 2) in rotating

e------e, f_ = 0, k 2 spectrum; .... , _ = 0.5, k 2 spectrum; ........ ,

, f_ = 0.5, k 4 spectrum;

independent of viscosity. For high Reynolds number turbulence, this is a reasonable

assumption since the direct effect of viscosity occurs at much larger wavenumber

magnitudes than those scMes which contain most of the energy. Thus, it is possible

to derive expressions for the asymptotic scaling of (u s) using an expansion of the
energy spectra near k = 0:

E(k) = 21rkS(Ao + A2k s +...) (11)

where A0, As, ... are the Taylor series coefficients of the expansion. As shown

by Batchelor & Proudman (1956), assuming that the velocity correlation tensor

(ui(x)uj(x + r)) is analytic at k = 0 results in A0 = 0 and a time-dependent value

of A2. On the other hand, Sail'man (1967) showed that it is also physically possible

to create an isotropic turbulence with a non-zero value of A0, which is also invariant

in time. As also shown by Chasnov (1993) the asymptotic scalings of (u s) for these
two cases are

(u 2) cx A_o/St-e/5 (k s spectrum) (12)

and

(u 2) o¢ A_/Vt -1°/7 (k 4 spectrum). (13)

It may be observed from Figure 1 that the agreement between the LES results and

(12) and (13) is excellent for both spectrum types. An analysis similar to that

leading to (12) and (13) may also be performed for flows having non-zero rotation

rates. For non-zero f_, the asymptotic scalings of (uS/are predicted to be

(u 2) cx A_o/st-3/5_315 (k s spectrum) (14)
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and

(u 2) oc A_/Tt-5/r_ 5/7 (k 4 spectrum). (15)

For the k 2 spectrum, the value of the decay exponent from the rotating flows in

the asymptotic region, approximately -0.64, is in very good agreement with (14).

Similar agreement between the predicted value of the decay exponent, -5/7, and the

measured values for the k 4 spectrum is also observed.

Evolution of the integral length scales are shown in Figures 2a and 2b. The

vertical integral scale is defined as

1/L. - +,-))d; (16)

while the horizontal integral scale is given by

zh- (u2)1f + r)) dr. (17)

Figure 2 clearly shows the significan*,ly greater growth in time of the vertical integral
scales relative to their horizontal counterparts in rotating turbulence. Also shown

in the Figure is the velocity integral scale, Lu, for _ -- 0. It is evident from Figure 2

that the horizontal integral scales in the simulations with non-zero _ are essentially

independent of rotation rate and evolve similarly to the length scale from the non-

rotating case.
The results in Figure 2 may be used to deduce a posteriori the asymptotic scaling

laws of the integral scales. For the k 2 spectrum, dimensional arguments and the

LES results in Figure 2a give the following dependence of the length scales on the

invariant Ao, t, and f_

Lh cx Alolst 2/5 (k 2 spectrum), (18)

i.e., no dependence of Lh on _. The appropriate scaling of the vertical length scales

for the k 2 spectrum is

Lv cx A_/Stl2 3Is (k 2 spectrum) (19)

since the long-time growth of L_ is observed from the LES results to be directly

proportional to time. Similarly, dimensional arguments together with the results in

Figure 2b can be used to deduce the length scale dependence on A_, t, and 12 for

the k 4 spectrum:

Lh o¢ A_lrt 217 (k 4 spectrum), (20)

similar to the non-rotating case. For the vertical length scales

L_ _ A_/rtfl 5/7 (k4 spectrum). (21)
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FIGURE 9.. Time development of the integral length scales in rotating turbulence.

(a) k 2 spectrum, (b) k 4 spectrum. _, L,, ft = 0; .... , Lh, f_ = 0.5; ........ ,
L,_, ft = 0.5; -----, Lh, fl = 1.0; _._, L,,, ft = 1.0.

As was the case for the simulations possessing a k 2 spectrum, long-time evolution

of L_ in the simulations having a k 4 spectrum was also observed to be directly
proportional to time.

As shown in Figures 2a and 2b, the evolution of the flow in the direction along

the vertical axis is strongly enhanced relative to the horizontal directions. Rapid

growth of the vertical length scales provides an indication of evolution towards a

two-dimensional state. This can be more clearly seen through examination of the

energy spectrum as a function of spatial wavenumber k as well as the cosine of the

polar angle in wave space (schematically illustrated in Figure 3).

Shown in Figure 4a is the energy spectrum as a function of both k and cos 0 from a

simulation with f_ = 0 and possessing an initial spectrum with low wavenumber part
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FIGURE 3. Wavenumber space showing rotation vector and polar angle 8. For

simulations of rotating turbulence, the pole is defined as 0 = 0 (cos8 = 1); the

equator as 8 = 7r/2 (cos8 = 0). Energy and transfer spectra arc considered to be

functions of both k and cos 8.

proportional to k 4. It may be observed from the Figure that, as expected, the energy

is essentially equi-partitioned with respect to cos S. Plotted in Figure 4b is the

energy spectrum from a simulation with _ = I (and k 4 spectrum). It is clear there

is a marked concentration of energy in the equatorial plane, 8 = 7r/2; the Figure

provides very strong evidence of the development of two-dimensional turbulence.

This result is also in sharp contrast to the previous examinations of E(k, cos 8) by

Mansour et al. (1992) using direct numerical simulation. Mansour et al. found only

a slight tendency for a concentration of energy near the equator. Because of viscous

dissipation in their simulations, it was not possible for Mansour et al. to integrate the

flow fields for long enough times in order to observe development of two-dimensional

turbulence. It is important to emphasize that development of a two-dimensional

state as demonstrated by Figure 4b cannot be captured by DNS because of viscous

decay. LES circumvents this restriction and permits long enough integrations such

that the non-linear interactions responsible for two-dimensionalization can occur.

Further evidence of the profound effect of rotation is contained in Figures 5a

and 5b. Figure 5a is the transfer function, T(k, cosS), from a simulation with

k 2 spectrum and _ = 0. The Figure shows the expected behavior, i.e., negative

transfer at low wavenumbers and positive transfer at higher wavenumbers. It is also

reasonably clear from Figure 5a that, as was the case with the energy spectrum, the
transfer term is independent of 8. The transfer term from the simulation with a k 2

spectrum and _ = 1.0 is shown in Figure 5b. As is clear from the Figure, rotation

has substantially altered the transfer spectrum. For values of cos 8 near 1 (the pole

in k-space), the energy transfer is small for the low wavenumbers and zero at the

higher wavenumbers. For cos 8 near 0 (the equator in k-space), the transfer term

is actually positive at low wavenumbers, indicating a transfer of energy into these

modes.
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FIGURE 4. Energy spectrum as a function of wavenumber k and cosine of the polar
angle 8; spectrum obtained from LES with k 4 spectrum. (a) f_ = 0 at t/r(0) = 427,
(b) _ = 1.0 at t/1"(0) - 575.

Time development of the two- and three-dimensional components of the kinetic

energy are shown in Figures 6a and 6b for both spectrum types and each rotation
rate. The two-dimensional component of the energy is obtained from Fourier modes

in the plane kz = 0 while the three-dimensional component is from Fourier modes

with kz # 0. The behavior is similar in both Figures and corroborates many of
the aspects of the flows observed in the previous Figures. As expected, it may be

observed that the decay of the energy is reduced with increasing rotation rates.
More importantly, the Figures also show that for non-zero f_ the two-dimensional

energy actually increases at later times in the flow evolution, consistent with Figure

5b showing a transfer of energy into the low wavenumber modes in the equatorial
plane.

Figures 7a and 7b show the temporal evolution of the diagonal components of
the anisotropy tensor of the Reynolds stress

b,i_ (ului) ,5i._
(u2) 3

for each spectrum type and i_ = 0 and 1.0.

(22)

It is interesting to note that, while
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FIGURE 5. Transfer spectrum as a function of wavenumber k and cosine of

the polar angle 0; spectrum obtained from LES with k2 spectrum. (a) ft = 0 at

tit(O) = 725, (b) f_ = 1.0 at t/r(0) = 552.

the flow is becoming two-dimensional under the influence of system rotation, the

distribution of kinetic energy amongst the three components shows little departure

from isotropic values. As shown in the Figures, the vertical fluctuations are slightly
enhanced by rotation relative to the fluctuations in the horizontal plane. The de-

velopment of the diagonal components of the anisotropy tensor of the vorticity

(wiw i) _ij (23)
vie- @2) 3

is shown in Figure 8. In contrast to the Reynolds stress anisotropy, this Figure
shows an enhancement of vertical vorticity relative to the horizontal components.

It is worthwhile to point out that recent work by Bartello et al. (1993) showed

a much stronger departure from isotropy of the component energies in rotating
turbulence. Bartello et al. used cubic domains to examine the long-time evolution

of the flow and consequently the evolution of the component energies was adversely

impacted. Based on their findings, Bartello et al. concluded that the long-time
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Evolution of two-dimensional and three-dimensional energy in LES.

, 3D energy,

, 2D energy,

state of homogeneous rotating turbulence was two-dimensional and two-component.

However, it is clear from Figures 7 and 8 that the asymptotic state of homogeneous
rotating turbulence is two-dimensional but three-component.

3. Future plans

LES results presented in this work demonstrated the existence of asymptotically

self-similar states in rotating homogeneous turbulence. Additional investigations

are planned to further corroborate this finding, e.g., examining the collapse of the

spatial spectra under the appropriate scalings. Related to this issue are the par-

ticular scalings found in the present work. For example, the scaling laws for (u 2)



168 K. D. Squires, J. R. Cha_nov, N. N. Mansour _ C. Cambon

O.4

0.2 ¸

0.0

"0.2"

-0.4
loo

i i

I t (_)
........................................................t.............................I................................

l L

i t
....................................................................!.......................................!.........................................

i I

lo' 1o_ lo_ 1o"

tl,-(o)

0.4" T

! (b)

0.2........................................._........................................{........................................i.......................................
1

L............ ,-p__.
o.o-..---.-__ ........

I

-0.2.....................................................................................!.........................................._..........................................

i I ;
-0.4 ' " ----""""-_

lo0 lo_ 1o_ lo' 1o"

tl,-(o)

FIGURE 7. Evolution of Reynolds stress anisotropy tensor. (a) k 2 spectrum, (b)

k 4 spectrum. Note that the curves for f_ = 0 are essentially coincident and lie along

the axis b_ = 0. -....... , bll, f/= 0; o ..... o , b22, f_ = 0; .... , bss, f_ = 0; --'--,

bll, $'/ --'- 1.0; _ , b22, _ -_- 1.0; ----- , b33, _'/-_- 1.0.

in rotating turbulence (Equations 14 and 15) can be obtained using the transport

equation for (u 2) together with dimensional analysis. The scaling laws for the

length scales, however, (Equations 18-21) rely on only dimensional analysis and a

posteriori examination of LES results. Development of a more rigorous approach

for predicting the length scale evolution observed in the present work would be

desirable.

This study also showed the utility of large-eddy simulation. As shown in this

work, development of an asymptotic state which is two-dimensional (but three-

component) is very significant, much more so than in previous examinations of

rotating turbulence using DNS. Given the encouraging results obtained to date, a
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likely extension of this work will be use of the LES database for developing a high

Reynolds number extension of the k-e model for rotating flows.
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Energy transfer and constrained
simulations in isotropic turbulence

By J. Jim6nez 1

1. Motivation

The defining characteristic of turbulent flows is their ability to dissipate energy,
even in the limit of zero viscosity. The Euler equations, if constrained in such a

way that the velocity derivatives remain bounded, conserve energy. But when they

arise as the limit of the Navier-Stokes (NS) equations, when the Reynolds number

goes to infinity, there is persuasive empirical evidence that the gradients become

singular as just the right function of Re for the dissipation to remain non-zero and

to approach a well defined limit (Sreenivasan 1984). It is generally believed that

this limiting value of the dissipation is a property of the Euler equations themselves,
independent of the particular dissipative mechanism involved, and that it can be

normalized with the large scale properties of the turbulent flow (e.g. the kinetic

energy per unit volume ul2/2, and the integral scale L) without reference to the

Reynolds number or to other dissipative quantities (Batchelor 1953, §6). This is

usually taken to imply that the low wave number end of the energy spectrum, far

from the dissipative range, is also independent of the particular mechanism chosen
to dispose of the energy transfer.

While these considerations have proved adequate in analyzing the solutions of

the NS equations at different Reynolds numbers, they are recently being used in a

more general context to predict the effect of different subgrid models in Large Eddy
Simulations (LES) of turbulent flows. The LES equations are neither the Euler

nor the NS equations. Because of the intrinsically finite capacity of computers, the

Euler equations are first truncated to a relatively low number of degrees of freedom,

generally much lower than that needed to represent the dissipative scales, and the

missing dissipation is provided by the addition of a "subgrid" model whose goal is to

mimic the effect on the large scales of the degrees of freedom that have been filtered

in the original truncation. In most cases, the resulting model is very different from

the quadratic viscosity characteristic of the NS equations, and the hope that it will

approximate the behavior of the original high Reynolds number flow hinges on the

belief that the dissipation independence observed empirically for the energy transfer
mechanism of the NS equations will persist in the new systems.

This is, therefore, a good time to re-evaluate the original assumptions and the

limits of their applicability. This will also give us a new tool to investigate the

mechanism of the energy cascade itself and its relation to normal viscosity. It has

always been an open question how much of NS turbulence is unique to the solutions

1 Also with the School of Aeronautics, Madrid.
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of the NS equations, and what parts of it would be shared by other nonlinear

systems of partial differential equations. The arguments outlined above suggest that

the quadratic nonlinearity might be essential but that the dissipative model is not.

While physical experiments with non-Newtonian fluids are difficult and relatively

rare, numerical experiment with different viscosity models are commonplace and

have been used for a long time to achieve higher Reynolds numbers that those

obtainable with Direct Numerical Simulation, especially in two dimensional flows.

As argued above, most LES computations also fall into this category. Although

many of these simulations have been quite successful in approximating the results

of experiments, relatively few detailed comparisons are available, and the presence
in most cases of adjustable parameters makes the agreement less compelling.

Moreover, there is some experimental evidence that this dissipation independence

is not complete in all cases. The addition of small concentrations of polymers in wall

bounded flows is known to produce a dramatic decrease of skin friction (Berman

1978). Since skin friction for a given flow rate is directly proportional to energy

dissipation, and since polymers are thought to act only on the small structures,
that evidence is troubling. The same is true of riblets (Walsh 1990), which also

modify friction even if they are small scale features. Finally, the friction coefficient
of smooth-walled channels does not asymptote to a fixed value, even at the highest

Reynolds numbers observed (Dean 1978). While wall bounded flows may be different

from isotropic or free shear flows, most conspicuously because in the wall region the

"local" Reynolds number can always be argued to be low, these observations should

be taken into account when extending the results of the latter into the behavior

of the former. In this work, we will only concern ourselves with the behavior of

isotropic periodic numerical simulations of the Euler or LES equations and with

their relation to NS turbulence.

Even in this case, we have to qualify our support for the hypothesis of complete

independence of the large scale motions from the details of the small scales. It is well

known that a consequence of an inviscid energy cascade is the famous Kolmogorov

(1941) E(k) '_ k -5/3 spectral law. Since this result is independent of viscosity,

the arguments above would make it a property of the Euler equations. But it has

been known for a long time that those equations have at least another power law

equilibrium spectrum E(k) "., k 2, corresponding to energy equipartition among the

spectral modes (Lee 1952). In physical systems, flow fields with such a spectrum are

highly singular and are not expected to be observable since any residual viscosity,
however small, would damp the high wave numbers and force a decreasing spectral

tail. These solutions are, however, consistent with the inviscid equations, and they

reappear as soon as the possibility of a singularity is removed. In fact, as soon as

the Euler equations are truncated to a finite number of degrees of freedom, they

tend spontaneously to the equipartition solution (Fig. 1). This is relevant to our
discussion because it shows that the effect of dissipation in the NS equations is not

only to fix the length scale of the viscous limit (the Kolmogorov scale r/), but to select
the "desired" k -5/3 spectrum away from the "contamination" of the equipartition

component k 2. It is not immediately clear whether other dissipation mechanisms
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100o

FIGURE 1. Evolution of the three-dimensional energy spectrum of the Euler

equations in a 643 numerical box. Time increases with energy at high wave numbers.

The initial flow field is fully developed turbulence from a NS simulation (solid line).

are able to do the same.

In the following sections, we present some numerical experiments on the effect

of substituting different dissipation models into the truncated Euler equations. We

will see that the effect is mainly felt in the "near dissipation" range of the energy

spectrum, but that this range can be quite wide in some cases, contaminating a

substantial range of wave numbers. In the process, we will develop a "practical"
approximation to the subgrid energy transfer in isotropic turbulence, and we will

gain insight into the structure of the nonlinear interactions among turbulent scales
of comparable size, and into the nature of energy backscatter. Some considerations
on future research directions are offered at the end.

2. Inertial simulations

2.1 The truncated Euler equations

This section of the paper will deal with attempts to model the inertial spectral
range of isotropic turbulence at infinite Reynolds number.

Our first numerical experiment simulates spatially periodic turbulence with no

viscosity. The numerical method is fully spectral, using primitive variables u, p,

with dealiasing achieved by spherical masking in Fourier space and phase shifting
(Rogallo, 1981, see description in Canuto et al., 1987). The resolutions quoted for
the different simulations reflect the number of real Fourier modes in each direc-

tion before dealiasing; the number of actual useful modes in the power spectra,
kmax, is slightly less than half that number. The Fourier expansion functions are

exp(ikjxj), Ik l -- 0, 1,..., N/2, so that the length of the box side is always 27r. The
time stepping procedure is second-order Runge-Kutta for the nonlinear terms and

an analytic integrating factor for the viscous ones, when present. The time step is
automatically controlled to satisfy the numerical stability condition. Unless stated

otherwise, all experiments are forced to achieve a statistically stationary flow, and
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the results presented are long term averages, usually taken over periods of the order

of one or two large scale turnover times after stationarity is achieved. Forcing is

achieved by multiplying all the modes in a spherical spectral shell by an appropriate

real factor at every time step until the total kinetic energy contained in the sheU

matches a predetermined value. The energy dissipation is measured by monitoring

the multiplying factor.
The first inviscid simulation was carried out at 643 resolution, and forcing was

used to fix the energy in the low wavenumber shell k = ]k[ <_ 2.5. The simulation

was initiated from a fully resolved NS forced field at the same resolution and with

km_x_/ _ 2, where _ is the Kolmogorov scale, with a microscale Reynolds number

Re_ _ 36 (Jim_nez et al. 1993). It was not carried to a stationary state due to time

limitations. As expected, energy accumulated immediately at the high wavenumber

end of the spectrum, which took a characteristic k s shape. Several stages of its

evolution are shown in Fig. 1. The absence of an appreciable numerical viscosity

was checked by monitoring the skewness of the velocity derivatives, which rose from

an initial value of approximately -0.5, characteristic of NS turbulence, to a final one

of +i0 -s.

The inability to obtain a dissipative spectrum from the truncated Euler equations

themselves shows that an extra condition is needed in the simulation. Since two

possible similarity solutions exist, two conditions have to be used to decide the

proportion in which they enter in the final solution. A useful model in which

to explore what practical conditions might be most appropriate is the "diffusion"

approximation to turbulent energy transfer proposed by Leith (1967). He obtains

a differential equation for E(k) as a function of time and wave number

OE/Ot + Oe/Ok : -2s/k2 E. (la)

where the dissipation e appears as an energy flux in spectral space, and is given by

e = -k az/2 _---_k-3E3/2. (lb)

Equation (lb) was constructed to have the solutions k 2 and k -_/3 in the inviscid

steady state limit and can be derived from an energy shell model with both forward
and backward scatter, in the limit of infinitely thin spectral shells (Bell and Nelkin,

1978). The two similarity solutions are

e = coast., E = (2e/13) 2/3k-5/_, (2)

and
= 0, E ~ k2. (3)

Since eq. (1) is nonlinear, the final stationary inviscid spectrum is not simply a

linear combination of both solutions, but

E= (2e/13) 2/s ( k-s�2 +ak3) 2/s" (4)
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FIGURE 2. Three dimensional energy spectra for Euler simulations in which

the total energy at high wavenumbers, k > kc, is kept fixed, in addition to the

forcing at low wave numbers. (a) kc = k=ax - 1. _ : energy in damped shell,

Ec = 7.5 x 10-2; ..... 10 -3. (b) kc = 2kmax/3. •....... line: E¢ = 0.05; _- :
approx. 0.027, see text; .... : 5 x 10-3; --.-- : 5 x 10 -4

This solution has the right Kolmogorov form up to an (arbitrary) constant but

contains an extra term coming from the equipartition component. Two conditions

are needed to adjust the dissipation, e, and the constant a. Note that in the model

as well as in the actual flow, the equipartition spectrum is conservative. Because

the behaviors of the two spectra are very different, one of them increasing and the

other decreasing with k, the two constants are determined almost independently by
disjoint wave number ranges. Fixing the energy in a low wave number shell essen-

tially fixes the dissipation because k 2 is small in that range, while fixing the energy

in a high wave number shell does the same for the equipartition component. This is

consistent with the common statement that the large scales of the flow fix the dis-

sipation, but it is true only if the equipartition component, a, can be guaranteed to

be O(1). The previous inviscid example shows that this only happens if the energy

at high wave numbers has been forced to be small. The role of viscosity, from the

point of view of the large scales, can be seen as that of avoiding the accumulation of

energy at high wavenumbers and thus of controlling the k 2 component of the spec-
trum. In general, spectra with an insufficient dissipation mechanism look "almost

right" at low wave numbers but have a large "hook" at high wave numbers, where

the k 2 component takes over. Small spectral hooks of this kind are common in the
last few wave numbers of direct numerical simulations.

2._ Constrained simulations

Figure 2a shows the results of two attempts at fixing the energy both in the

high and in the low spectral shells for a direct Euler simulation. The numerical

parameters and the forcing scheme in the low wave numbers are exactly the same

as for Fig. 1, but the code also adjusts independently the last spectral shell (of width
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Ak = 1) by multiplying all the modes in it by a new damping factor, computed

every time step, that brings the total energy in the shell to the desired level. This

proves to be effective only when the energy chosen is high enough but fails if it is
too small, in which case the rest of the spectrum decouples from the damped shell.

A little thought shows that too small an energy in the high wave numbers inhibits

the energy transfer and that the next lower shell cannot dump energy into it fast

enough. This is no more than saying that the Reynolds stresses, and the turbulent

energy transfer, can only work if there are small scales to generate them, and that
the dissipation of a laminar flow is much smaller. The result is an accumulation of

energy similar to the one in the inviscid case. In fact, the limit in which the energy
in the last shell is set exactly to zero is numerically equivalent to de-aliasing, and

it would produce the same result as the unconstrained simulations in Fig. 1.

Controlling the energy over a thicker shell is more efficient since the lower modes

have more spectral triads into which the energy can be transferred (or more active

small scales). The result of fixing, in the same way as before, the total energy
contained in all the modes with wave numbers k > kc = 2km_,x/3 is shown in Fig.

2b. It is now possible to control the energy of the high modes almost well enough
to obtain a k -5/3 extrapolation from the modes that are completely resolved by the

simulation. The solid line in Fig. 2b is defined in that way; the energy above kc
is controlled at each step to coincide with the value it would have if its spectrum

was a smooth inertial extrapolation of E(kc). That choice seems to be close to

optimal from the point of view of obtaining a k -_/3 over most of the inviscid scales.
However, in this case also, an attempt to make the energy too small in the damped

shell gross contamination of the spectrum with the equipartition component.

In all these simulations, the resolved scales are inviscid. In Fig. 1, all the spectral

modes, except those in the lower forced shell, satisfy the Euler equations, and
since there is no energy dissipation, the solution tends to equipartition. In the

simulations in Fig. 2, only those modes with k < k, satisfy the inviscid equations.

They receive energy from the lower forced shell and lose it to those modes above

kc, where it is removed every time step by the damping factor. This factor acts as
an effective viscosity which is zero for all modes below kc, but which is active above
that threshold and which can be considered as an extreme case of wavenumber

dependent hyperviscosity.

Fornberg (1977) used a similar simulation scheme to compute two dimensional
turbulence. He let the enstrophy in a high shell grow for some time under the effect

of the cascade and zeroed it periodically. The present scheme is probably a better

representation of the true cascade dynamics in that it gives the flow a stationary

energy reservoir with which to interact

In both schemes, the effect of the damped high-wavenumber shell is to provide

a spectral bucket into which energy can be dumped naturally by the nonlinear
interactions. It appears from the results of the simulations that a simple uniform

damping factor, which adjusts the amplitudes of the small scale modes but does
not modify their phase relationships, provides an approximation to the small scale

flow that is good enough to produce a reasonably accurate level of energy transfer
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into the damped shell. The key seems to be having the right amount of energy in
that shell to produce the correct cascade rate. This suggests that an ideal transfer

could be obtained if the energy spectrum in the damped shell was adjusted to follow
exactly the k -_/a law.

A similar experiment was performed by (She 8z Jackson 1993, Zhou 1993). Both
investigators constrained the entire spectrum to follow exactly the k-5/3 law and

studied different aspects of the energy transfer. In both cases, the correct scaling

behaviors were observed and the Kolmogorov constant fell in the range of the ex-

perimental values. Shtilman and Chasnov (1992) also studied a constrained Euler

system in which the spectrum was forced to remain exactly equal to that of a direct

simulation of the same flow, run in parallel at higher resolution. Their goal was to
determine whether the statistics of the constrained flow would be similar to those

of the DNS field at the same time when filtered down to the same resolution. The

correspondence was shown to be only approximate, especially for the higher statis-

tical moments, but the low order statistics, those involved in the energy transfer
mechanism, agreed well.

Our goal is different. We are not only trying to understand the degree to which the

constrained system approximates locally the energy transfer, but also to determine

whether an unconstrained system can be made to simulate the inviscid inertial

spectrum by providing it with a downstream spectral "boundary condition" which

absorbs energy in the right way. If this turns out to be possible, the unconstrained

system might better approximate the statistics of the large scales, even though

those of the small scales are only accurate to the extent of providing a correct

energy sink. Such a scheme also offers a better chance of being adaptable to the

study of inhomogeneous turbulent flows. We are therefore interested in constraining

only a partial spectral shell at high wave numbers to a spectrum that is the k -5/a
extrapolation of the energy in the last fully resolved shell kc.

This was done for the dotted line in Fig. 3. The modes in k > kc = kmax/2

were divided into sub-shells of thickness Ak = 1, and an independent damping

factor was computed for each sub-shell at each time step to bring the spectrum to

the form E(k, t) = W(kc, t)(kc/k)s/s. As expected from the previous discussion,

the behavior of the whole spectrum and not just that of the forced part was much

closer to inertial than before. When the compensated spectrum is plotted in linear

coordinates, however, it is seen that the result is still not perfect (Fig. 3b). A perfect

inertial spectrum in this representation would be strictly equal to the Kolmogorov
constant.

2.3 Turbulent viscosity

What are still missing are the nonlinear interactions involving scales smaller than

those at the high end of the damped shell, which are not resolved in the simulation.

Those interactions, linking the unconstrained modes with those in the sub-grid

scales, act across a spectral gap imposed by the damped shell, and it is generally
accepted (Kraichnan 1976, Yoshizawa 1982) that under those circumstances the

effect of the small scales is equivalent to that of a constant eddy viscosity. The

presence in filtered DNS fields of an eddy viscosity plateau at wave numbers one or
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FIGURE 3. Three dimensional energy spectra for Euler simulations in which the

energy spectrum in the high wavenumber shell, k > kin,.,,�2 is adjusted continuously

to k -5/3, in addition to a constant eddy viscosity and to the forcing at low wave

numbers. (a) Uncompensated, (b) Normalized. •....... : normalized eddy viscosity,

_/_0 = 0; _ : 0.8; .... : 1.4.

more octaves lower than the filter width has been confirmed experimentally (Lesieur

and Rogallo 1989). From dimensional considerations (Kraichnan 1976), the viscosity

coefficient can be written as

ue = a [E,(kmax)/kmax] '/2. (5)

The normalized eddy viscosity a can be evaluated within the EDQNM approxi-
mation for infinite Reynolds number as s0 _ 0.267 (Lesieur, 1990, pg. 324). This

value assumes that the energy spectrum is strictly inertial beyond kraax, with a Kol-

mogorov constant of 1.4. The effect of adding this viscosity to the previous simula-
tion is shown in Fig. 3. All modes are first marched according to the NS equations,
with the viscosity given by rescaled to k -5/a. Different values of a produce slightly

different results, but the spectrum seems to fit best a single k -5/a law for a value

slightly smaller than the EDQNM result, a _ 0.214 = 0.8a0. The corresponding
Kolmogorov constant is in the range 1.8-1.9 (see Fig. 3b), in excellent agreement
with that obtained in (She & Jackson 1993). This value is somewhat larger than the

usually accepted one of 1.5, and the reason for the discrepancy is not clear. Zhou

(1993) obtains a value of approximately 1.5 using a method which is conceptually
similar to the one in (She & Jackson 1993). It has been suggested (Rogallo, pri-

vate communication) that the discrepancy between the numerical and experimental

values may result from the relatively small number of numerical modes in the sim-

ulation (643) which robs the cascade of the interactions with the low wavenumber
modes at scales larger than the size of the computational box. If that were so, the
correct value would be approached for larger simulations. A single experiment in a

1283 box, using the same subgrid mode, gave a slightly lower constant in the range
1.75-1.85, but the difference was too small for a definite conclusion.
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FIGURE 4. Equilibrium three-dimensional energy spectrum for 643 numerical

boxes in which energy is forced both at the low wavenurnber shell, and for modes

above kc = kmax/2. _ : Total energy in the high shell extrapolated to k-5/3

.... : Energy spectrum in high shell extrapolated. Vertical line is limit of damped
shell. Turbulent viscosity in both cases: a/_0 = 0.8.

In any case, these experiments suggest that, besides the constant eddy viscosity
introduced to model the interaction with the very small scales, all that is needed to

correctly model the dissipation at high Reynolds numbers is to have a "sacrificial"

spectral shell with the right amount of energy, just beyond the scales of interest.

The nonlinear interactions with the modes in that shell mimic those with scales just
below the fully resolved ones in the real flow. It is importaalt to realize that there

is little reason to expect the modes in the damped shell to be correctly computed
and that they should be filtered out when flow statistics higher than the energy are
calculated.

For the infinite Reynolds number case studied here, the optimum damping strat-

egy seems to be to constrain the spectrum in the sacrificial shell to the extrapolated
k -_/3 law. Other similar strategies can probably be developed for flows at lower

Reynolds numbers. While this is trivial to implement in the present isotropic spec-

tral code, it is interesting to inquire whether the energy transfer outside the damped
shell is sensitive to the detailed form of the constrained spectrum, or whether a sim-
pler strategy might be used.

Figure 4 shows the results of an experiment in which the total energy in the last

shell (k > kc = kmax/2), rather than its spectrum, was used as a constraint, with
the extra addition of the eddy viscosity of Fig. 3. The total energy is adjusted to the

one that would be contained in the damped layer if its spectrum were extrapolated
from E(kc) according to the k-5/3 law. The optimum simulation from Fig. 3 is also

included for comparison, and the results are seen to differ little outside the damped
layer•

From a practical point of view, this scheme is much simpler that the full k-g� 3

one since it involves only the calculation of a single global energy and of a single
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damping factor. It could, in principle, be implemented in a finite difference code by

the use of appropriate filters.

3. Backscatter

The results in the previous section are consistent with the classical idea that the

interaction of a given range of turbulent scales with features of much smaller size

can be approximately modeled by an eddy viscosity, even though the interaction

between similar scales can not. A common scheme for the modeling of these near

interactions is to separate them into an enhanced wave-number dependent eddy

viscosity and a backscatter component which moves energy from the small to the

large scales (Kraichnan 1976, Leslie & Quarini 1979). The backscatter component
is sometimes represented as a random stirring force (Chasnov 1991) because it can

be shown that the effect of such a force is always to feed energy into the flow. The

separation into forward and backward cascade has been re-encountered recently in
a different context. When a direct simulation of turbulence is divided into large and

small scale components by filtering the velocity field, the flow of energy between the

two components is found to be randomly positive and negative at different spatial

locations in the flow, so that the global energy drain to the small scales is only

the small residue from two large terms of opposite sign (Piomelli et al. 1991). It

has also been shown that most of this random energy exchange is dominated by

interactions among structures separated at most by a factor of two in wavenumber

magnitude (Domaradzki, Liu &: Brachet 1993).
There is no clear correspondence between the two different definitions of backscat-

ter, and in fact, it can be argued that the existence of regions of positive and negative

energy transfer has little to do with the presence of a cascade. It is easy to find

examples of steady laminar flows in which there is no net transfer of energy, but

which contain regions of localized forward and backward "cascade". An examina-

tion of such flows might be useful in understa_.ding more complicated situations.

We will discuss a simple example which admits an analytical solution.

Consider a velocity field u which is decomposed into large and small scale com-

ponents by means of a circular box filter

G(x) = 1/Tra 2 if Ixl < a, G(x) = 0 otherwise. (6)

Denote filtered, large scale, variables by an overbar. The subgrid Reynolds stress is

defined as

r_i = uiu i - uruj. (7)

It is also possible to define a large scale rate of strain tensor

S_ = (_,,i + _i,,)/2, (8)

and a local subgrid "Reynolds" energy transfer rate

Q = rijS,i. (9)
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This term appears on the fight hand side of the energy equation for the large scales

and, with the opposite sign, on that for the small scales. Consider now a simple

steady two dimensional flow formed by a point vortex, of circulation % located at
the origin in the pure straining field

_1 = --O'X2, U2 = --O'Xl" (10)

It is easy to see that the effect of the filter on the point vortex is to spread it into a

circular patch of uniform vorticity wa = 7/4_ra 2 with radius 2a, while the straining
flow (10) is left invariant. The full Reynolds stress and rate of strain tensors can be

computed explicitly (see Appendix) and the dominant terms near the origin are

721°g(a/r)( sin2¢ -sine cos¢) (11)rij - 2r2a 2 - sin ¢ cos ¢ cos 2 ¢ '

which is due to the vortex, and

which is due to the stagnation flow, where (r, ¢) are polar coordinates based on
(xl, x2). When r (._ a, the transfer term behaves as

Q-- "y20" log(a/r)sin 2¢, (13)
27r2a 2

which is not zero pointwise even though its integral vanishes identically when taken
over the whole plane, as it must for any stationary flow.

The interpretation is easy. The small scales of the flow lie near the vortex, where

gradients are large. The vortex alone produces no transfer since fluid particles follow

circular trajectories at a constant distance from the center and, therefore, remain

at the same "scale". When the stagnation flow is added, the particles move towards

the vortex when they pass near ¢ = 7r/4 or 57r/4, and away from it when they pass

near ¢ = 37r/4 or 7rr/4. In the first case, the particle moves from a large scale to a

small scale environment, and the energy appears to cascade to higher wave numbers.

In the second case, the opposite is true, and the cascade is reversed. Note that in

reality there is only a reversible deformation of fluid particles as they are carried

by the flow into regions in which the dominant local gradients are larger or smaller.

It can be shown that in situations less symmetric thaal the one discussed here, the

energy exchange is most active when the scales of the advecting flow are roughly

similar to those of the flow generating the gradients. The "true" cascade, resulting
in an irreversible transfer of energy from one scale to another, comes from those

interactions in which the two scales are very different and in which the deformations

are not reversible. The idea that most of the interaction between neighboring scales

is not a simple energy diffusion process was put forward forcibly by Kraichnan
(1976), Rose (1977), and many others afterwards.
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The situation is complicated further because the quantity Q is only part of the real

' subgrid energy flux e(x, t) _- -D(_2/2)/Dt, although it is often used to represent
the entire flux because the volume integrals of the two are the same. The local

difference, which contains the divergence of pressure-velocity and stress-velocity

products, can be of the same order of magnitude as the flux itself, and in fact, it is

easily seen that the sign of (13) is not even necessarily the same as that of the real

transfer because it is compensated by the divergence terms. A consequence is that

while it makes sense to speak of energy transfer over large volumes of the fluid or of

transfer between widely separated scales in which the surface terms tend to cancel

statistically, the local energy transfer due to the type of eddy advection displayed

by the previous example is a poorly defined quantity that may be difficult to model

in any locally deterministic way. The procedure outlined in the previous section

avoids this by providing a model for the subgrid scales rather than trying to model

the stresses that they produce.

4. Discussion and future work

We have shown that, at least for the calculation of the energy spectrum, isotropic

turbulence at high Reynolds numbers can be modeled rather simply by damping

a high wavenumber spectral shell in such a way that the energy it contains is the

same as that which would be contained in a corresponding shell within an inertial

range. The simulations are improved somewhat by the addition of a constant eddy

viscosity to account for the nonlinear interactions with scales smaller than those

contained in the constrained shell. The magnitude of the viscosity coefficient is a

function of the energy in the last spectral shell and agrees approximately with the

predictions of EDQNM calculations. The interactions with the flow scales in the

constrained shell are approximately accounted for by providing that shell with the

right energy, and they include all the backscatter from small to large scales since

the effect of the eddy viscosity is purely dissipative.
The effect on the resolved scales of varying the normalized eddy viscosity, the only

adjustable parameter in the model, is slight (Fig. 3) although it has a large effect on
the behavior of the damped shell. This is best explained by the fact that most of the

energy transferred from the resolved scales goes into the spectral octave immediately

below it, but that the scales themselves are insensitive to the eventual fate of the

energy once it has been transferred. For example, in both of the simulations in

Fig. 4, approximately 72% of the energy is lost to the damped shell while only the

remaining 28% is withdrawn directly from the resolved scales by the eddy viscosity.

These values are broadly comparable to those predicted by the simplified analysis

of Tennekes &: Lumley (1972), who on the basis of qualitative arguments about the

physical mechanism of the cascade, conclude that the energy transfer between shells
with wave numbers k and k t > k should vary as (k/k') 7/_. This behavior has been

verified in (Zhou 1993) for shells with large wave number disparities. An integration

of that law results in a prediction that 61% of the transfer should go to the next

wave number octave.

The insensitivity of the resolved scales to the details of the energy dissipation in

the damped shell can be seen from the comparatively small differences between their
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spectra in the a = 0 and a/ao = 0.8 simulations in Fig. 3. The energy budgets

of the damped shell in both cases are very different. For a = 0, energy is removed

only from the damped shell by the damping factor, while for a/a0 = 0.8, 28% is

removed from the resolved scales by viscosity, 52% is removed by viscosity from the

damped shell, and only the remaining 20% is removed by the damping factor. It is

this locality of the energy transfer, coupled with insensitivity to the details of the

unresolved energy shells, that makes modeling practical.

The present set of experiments belongs to the recently developed class in which

part of the flow field is computed as auxiliary to the calculation of the largest

scales and eventually discarded. The best known of them is the Dynamic model in

(Germano et al. 1991). In that model, the subgrid dissipation is modeled by an

eddy viscosity whose magnitude is computed by enforcing similarity of two different

scales of the flow. Because the similarity is applied locally, the presence of pointwise

backscatter results in locally negative viscosity coefficients that cause numerical

problems. It follows from the arguments in §3 that such diffusive models for the

backscatter are unlikely to be successful.

We have followed a different route in that we have simulated the near interactions

by providing an actual energy shell of roughly the right amplitude with which

the flow can interchange energy naturally. There is no guarantee that the flow

structures whose scales are in this shell are correctly computed, and they should
be filtered before the results are used. This is true of the smallest scales in most

LES calculations. On the other hand, the present scheme is intrinsically dissipative

and unlikely to develop numerical instabilities. As in the Dynamic model, most of

the dissipation is computed from the flow parameters themselves, and the residual

eddy viscosity can be computed from analytic arguments. Furthermore, since the

eddy viscosity scales with the turbulent energy, the laminar limit is contained in

the model. Although the discussion in this paper is framed in terms of a spectral

approach, it is indicated at the end of §2 how the model could be adapted to finite
difference codes.

The experience gained in this work provides some insight into the reasons for

the success of the Dynamic model in many situations. The similarity assumption

in the Dynamic model essentially provides the right eddy viscosity for a smooth

extrapolation of the spectrum of the resolved scales (the "test" filter) into the

smaller scales and, therefore, provides a high wavenumber component with the

right extrapolated energy. We have shown here that this seems to be enough to

provide the field with the right dissipation.

The present model has been developed as a research tool for the study of energy

transfer in isotropic turbulence and has only been tested on low order statistics.

Since most high order statistical moments are known to be dominated by the small

scales of the flow, they are unlikely to be captured correctly by this, or by any, LES

model. More important, we have only dealt with homogeneous turbulence, and as
outlined in the introduction, there are reasons to believe that some of the conclusions

might not be directly applicable to inhomogeneous situations. In particular, the

crucial independence of the large scale flow from the small scale details may not be
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true in arty local sense for those cases. Clearly, much more work is needed in all
those directions.
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Appendix: Energy transfer in a simple stationary flow

We present here the detailed analysis of the flow discussed in §3, formed by a

point vortex at the stagnation point of a straining flow in eq. (10). We define

polar coordinates (7", ¢), but express all vectors and tensors as components on the
Cartesian axes (xl, x2). The velocity field due to the vortex is given by

3' (sine,-cos¢), (A 1)
Uv -_- _'_--_r

and that due to the straining flow is

u. = -at (sin ¢, cos ¢). (A - 2)
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After filtering, the vortex becomes a uniform circular vortex patch. We will only
be interested in the behavior of the energy inside the patch, where r _ 2a. The

filtered velocity is
"yr .

Uv = 8-_a 2 (sin ¢, - cos ¢), (A - 3)

while the filtered straining flow is equal to itself because of linearity. The Reynolds

stresses are computed according to equation (7) and contain terms coming from the

interaction of the vortex with itself, from the interaction of the straining flow with

itself, and from the mutual interaction,

r_=_ log _--1 -_ k,-sin¢c°s¢ cos 2¢ '

[ ra221 (-sin2 ¢ 0 ) (A-5)"ra 1-
= T 0 cos2 ¢

rss-- 2 k,-sin¢cos¢ cos 2 _"

The dominant term when r << a is the logarithmic term in (A-4), which is reflected

in eq. (11) in the body of the paper. In the same way, the filtered rate of strain
tensor has a term coming from the vortex and another coming from the straining

field,
-'y [-sin2¢ cos 2¢

167ra 2 k, cos 2¢ sin 2¢ ] '

(o1
(A - 7)

(A - s)

Both are of the same order near the origin, but (A-7) is orthogonal to the dominant

stress, and the vortex does not generate energy transfer when interacting with itself.

The "Reynolds" transfer, Q, near the origin is given by eq. (13).
Most of this transfer, however, is spurious and cancels with various divergence

terms in the energy equation. The real transfer of kinetic energy from the subgrid

scales into the filtered flow field is

D_ 2/2
-e - = _. V_, (A - 9)

Dt

and can be computed exactly as

-e=a 64_a 4 a 2 r 2sin2¢. (A-10)

Its angular structure is the same as that of Q, but its sign depends on the balance
between the increase of the azimuthal velocity as a particlc approaches the vortex

and the decrease of its radial velocity as it approaches the stagnation point.
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A large eddy simulation scheme
for turbulent reacting flows

By Feng Gao

1. Motivation and objectives

Turbulent reacting flow has been an important problem and has attracted much

attention from researchers in a variety of science and engineering disciplines. Despite
intense research activity, however, much remains to be done in this field (O'Brien

1980; Pope 1985, 1990). One of the key issues in engineering application is to

employ the existing models and techniques to develop a relatively simple numerical
scheme for simulating complicated reacting flow systems.

Several approaches have been introduced to overcome the closure problems en-

countered in turbulent reacting flow simulations. Among them, the probability
density function (PDF) method provides a closed form representation for the chem-

ical source terms (O'Brien 1980; Pope 1985); for this reason it has become a pre-

ferred choice. However, the scalar PDF does not contain information concerning

the transporting velocity field and the interactions between the scalar and velocity

fields that has to be provided by supplementary turbulent transport and mixing
models in reacting flow simulations.

The recent development of the dynamic subgrid-scale (SGS) model (Germano
1992; Germano et al 1991; Ghosal et al 1992) has provided a consistent method for

generating localized turbulent mixing models and has opened up great possibilities

for applying the large eddy simulation (LES) technique to real world problems.

Given the fact that the direct numerical simulation (DNS) can not solve for engi-
neering flow problems in the foreseeable future (Reynolds 1989), the LES is certainly

an attractive alternative. It seems only natural to bring this new development in
SGS modeling to bear on the reacting flows.

The major stumbling block for introducing LES to reacting flow problems has
been the proper modeling of the reaction source terms. Various models have been

proposed, but none of them has a wide range of applicability. For example, some

of the models in combustion have been based on the flamelet assumption (Kerstein

et al 1988; Trouv6 & Poinsot 1992), which is only valid for relatively fast reactions.
Some other models have neglected the effects of chemical reactions on the turbulent

mixing time scale (Valifio & Gao 1992), which is certainly not valid for fast and
non-isothermal reactions (Vervisch 1993).

The PDF method can be usefully employed to deal with the modeling of the

reaction source terms. In order to fit into the framework of LES, a new PDF, the

large eddy PDF (LEPDF), is introduced. This PDF provides an accurate represen-

tation for the filtered chemical source terms and can be readily calculated in the
simulations. The details of this scheme are described below.
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2. Accomplishments

L_rge eddy PDF

The large eddy fields, which are explicitly simulated in the LES, can be obtained

by filtering the true fields with certain filters G (Germano 1992; Rogallo & Moin

1984); namely,

A(x, t) = f_oo A(x', t)G(x' - x)dx'.

Among the commonly used filters, we are particularly interested in those that are
localized in physical space, such as the local volume average (Schumann 1975) and

the Gaussian filters (Leonard 1974), since they describe local averaged effects. For
reasons that will become clear later, we choose only these positive definite filters.

By applying a filter of size A, which is generally the mesh size in LES, the Navier-

Stokes equation can be written as

_ u _' = vv2_ - v_- _. (1)_- + J axj

Here Tij = uiu---_- uiuj is the SGS stress and is normally modeled by the eddy-

viscosity model originally proposed by Smagorinsky (Smagorinsky 1963):

1
nj - _ _,J = -2CA21_1_, (2)

where Sij is the strain rate tensor

1._i, 0iij)
S_j= "_(-_xj+ Ox,

and I-SI= 2_i j -S ,j .

The same type of filter with larger size /_ > A can be applied to the same

equation. The resulting SGS stress can be represented by

r_j = _ - _.

If the filters are well behaved ones such as the Gaussian filters, we will have the

following convolution relation

G(x - x', l) = G(ll) * G(12) = f G(x - xl, il)G(xl - x', 12)dxl. (3)

Take the Gaussian filter as an example; it can be shown that 12 --- l_ + l_. It is

obvious from (3_ that A -- _, where ".4" is the filtering performed by the "gap
filter" between A and A. The Germano identity (Germano 1992)

- I"- = = (4)T,j - rij = Lij = u_uj -- uiuj,
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where the right hand side can be explicitly evaluated from the LES field, can then

be used to calculate the local coefficient C for the Smagorinsky model (Germano et
al 1991; Moin 1991; Lilly 1992).

A similar method can be applied to the turbulent scalar field ¢, which is governed
by

0¢ u oak
_- + ,_ = DV_¢ + _(¢(x, t)). (s)

Its large eddy counter-part can be written as

o_ _ o_ a _-7-/.¢ --_ + u j-- = DV2_- _(x, t).o_ _( i - n_¢) + (6)

Similar eddy-viscosity type models can be developed for the scalar field (Moin et al
1991), namely

u,¢ -_¢ = -D._-_i, (7)

where D, can again be obtained through the dynamic procedure described above.
The major problem is to find a suitable SGS moael for the reaction source term

w(¢). Noticing that

_(x,t) = ,,,(¢(x', t))C(x' - x)dx' = d¢,,,(¢) t)G(x' - x)dx'],
oo

where (S)

p(¢;x, t) = ,(¢ - ¢(x, t))

is the fine-grain function, it is clear that once

£PL(¢;x, t) = p(¢;x', t)C(x' - x)dx' (9)

is known, the filtered equation for the scalar field _p is closed. For positive-definite
filters, it can be shown that PL has all the properties a PDF should have. We define

it as the large eddy PDF. It is a generalization of the existing PDF concept.

In fact, for a homogeneous field, where the ensemble average can be replaced by
the space average, the traditional PDF (O'Brien 1980; Pope 1985) can be recovered

from our definition if a volume average filter is applied to a large enough space

volume. For more general cases, PL can be regarded as a weighted average of all

contributions from the neighboring field points, depending on how far they are from
the observation point.

The governing equation for PL can be derived following the standard procedure
(O'Brien 1980; Pope 1985). It can be shown that

Op 0

_- + u. Vp = -_-_[(DV2¢ + w)p]. (lO)
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Applying the filter on both hand sides of (10), we get

&
(11)

The last term on the RHS of (11) can again be modeled by the eddy viscosity

assumption. Since p is controlled by the underlying process ¢, the D, obtained for

_b is equally applicable for p (Jiang & O'Brien 1991). A brief proof follows.

Suppose the eddy-viscosity for PL is Dp. Note that

](¢) = / CVL(¢)d¢.

It can be shown, by multiplying ¢ on both sides of equation (11) and integrating

over the composition space after inserting

D OPL
ujp--ujp=-- p'_x i

that

0¢ 0¢ =DV2_+ O "D 0¢)

Comparing this equation to equations (6) and (7), it is obvious that Dp = D,.

It can be shown that

(pV2_) = EL{V2¢I¢}PL(¢).

If A and B are composition space representation of the fields a(x) and b(x), then

EL is defined by

EL{A[B}PL(B) = / APL(A, B)dA

and

PL(A, B) = /6(A - a(x'))6(B - b(x'))G(x' - x)dx'.

EL{AIB } can be interpreted as the average of A, weighted by G(x' - x), over

the spots where b(x') = B. The modeling of this term is generally difficult, as
we have experienced in the traditional PDF approach. However, the fundamental

physics expressed by this term remains the same - it represents the enhancement
of diffusion by turbulent fluctuations. Therefore, models analogous to those used
in the traditional PDF can be used to close this term. For example, if the LMSE

model (O'Brien 1980) were used, we would have

EL{V2¢I¢ } _ _1(¢_ _) + DV2_,
TL
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where 1/rL o¢ (D + D,). After substituting this relation into (11), it can be shown

that (11) recovers (6). Therefore, this relaxation model is adequate if one is only
interested in the large eddy field.

Equation (11), supplemented by the above closure models, can be solved using

the well established Monte-Carlo techniques for the scalar PDF (Pope 1981, 1985).
A few advantages of this simulation scheme can be immediately identified. First, a

general model for the chemical source term is developed based on the PDF. It, in

principle, applies to all kinds of reactions and does not require any artificial pre-
assumptions. Secondly, the interactions between chemical reaction and turbulent
mixing are embedded in the current model - the effects of reaction on turbulent mix-

ing are reflected in D, through the dynamic procedure. Thirdly, the LES provides

the flexibility of resolving a certain range of large scale structures while modeling

the contributions from the rest of the scales. It can be applied to a wide range of
problems with different degrees of resolution depending on the available resources.
Moreover, it may be worth mentioning that the Monte-Carlo simulation for scalar

PDF is a well established technique while LES has shown great potential with the

introduction of the dynamic SGS model. The outlook for applying the proposed
scheme seems to be promising. We intend to apply the scheme described above

to reactive flow problems in a number of turbulent flows, such as in homogeneous
flows, for which DNS results are available.

A consistency condition/or SGS model

There are, however, certain problems that should be further investigated. Cor-

rectly modeling turbulent mixing in the PDF formulation has been a long-standing
problem which surely deserves more attention (Gao 1993). The consistent determi-

nation of the eddy viscosity in the LES is another such problem.

Several different consistency conditions should be considered in calculating the
eddy viscosity. First, the eddy viscosity is localized; namely, it is a function of both

space and time. It can not be taken freely out of the space filter; therefore, it cannot

be evaluated by simple algebraic procedures. A variational approach (Ghosal et al

1992), which leads to an integral equation for the coefficient C, and a differential

equation approach, which will be described below, have been developed to overcome

this problem. Another problem is that there is no reason to believe that the eddy

viscosity should be the same on both the cut-off (A) and the test (_) filter levels.

Since the equation for C constitutes an over-determined problem (six equations for
two C in the case of velocity, if different model coefficients are assumed for different

filter levels), the least mean square estimate technique can be used to evaluate these

different model coefficients at different levels (Moin 1991; Lilly 1992). To use the
variational approach, two integral equations will have to be solved. It could be
numerically very intense to do so.

In fact, if A and _ are in different scale ranges, there is no reason even to believe

that Tij ,'_ Tij(-_ij) and rij "_ rii('Sij ) will have the same functional form. It is,

therefore, helpful to imagine that the cut-off and the test levels are brought closer

and closer to each other. In this limiting process, we can be assured that Tij and
rij will have the same functional form and that the coefficients C at different levels
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will approach each other.
A formal procedure can be performed in this limiting case. For simplicity, we will

omit the bar in _ in the following derivations.

We assume that the gap between the cut-off and the test filters are represented

by e. As the gap between two filters narrows (e -----*0), G(x' - x, e) becomes more
"concentrated". In fact,

lira G(x' - x, e) = 6(x' - x).
¢---,0

Let

0 = f(xl - x)2a(x, - x, e)dxl,

it is obvious that lira,--.0 8 = 0.

For simplicity, we will only consider symmetric filters, i.e.
However, this method is not restricted to symmetric filters.

Under symmetric conditions, we have

(12)

j 8 2a(x)= ,a(xl-x,,)dx, =u(x)+_V u+O(02).

G = G(Ix, - xl).

(13)

Obviously,
Lij = 8Vui • Vuj q- 0(82).

Similarly, for the Smagorinsky type of SGS model, we have

Tij- rij = 0[-2CA2(a-_--21SiJ + I-_[V2SiJ +
Sk:V_Skl

ISl
Su)

(14)

1,50Uk OUk
+/x_v_(ClSl&_) + _ _J_ oz, ] + o(o_),

(15)

where we have used the relation/_2 = A _ + aS_. For Gaussian filters, a = 1.

Substituting both (14) and (15) into the Germano identity (4) and taking the

limit e ----} 0, we have

Sk_V2Skt _.._+ A2V2(CISISij)
-2CA2(o_'_2Sij + [-_V2Sij + IS [ "-'u,

16" Ouk Ouk (16)
= Vui. Vuj - _ ,,Oxt Oxl"

This equation, when properly contracted, can be used to solve for the local model

coefficient, C. Clearly, this procedure can be equally useful if different functional

forms for Sij and rij are chosen.
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The combustion program at CTR

By T. J. Poinsot 1

1. Introduction

Understanding and modeling of turbulent combustion are key problems in the

computation of numerous practical systems. Because of the lack of analytical the-

ories in this field and of the difficulty of performing precise experiments, direct

numerical simulation (DNS) appears to be one of the most attractive tools to use

in addressing this problem. The general objective of DNS of reacting flows is to

improve our knowledge of turbulent combustion but also to use this information for

turbulent combustion models. For the foreseeable future, numerical simulation of

the full three-dimensional governing partial differential equations with variable den-

sity and transport properties as well as complex chemistry will remain intractable;

thus, various levels of simplification will remain necessary. On one hand, the re-

quirement to simplify is not necessarily a handicap: numerical simulations allow

the researcher a degree of control in isolating specific physical phenomena that is
inaccessible in experiments.

CTR has pursued an intensive research program in the field of DNS for turbulent

reacting flows since 1987. DNS of reacting flows is quite different from DNS of

non-reacting flows: without reaction, the equations to solve are clearly the five

conservation equations of the Navier Stokes system for compressible situations (four

for incompressible cases), and the limitation of the approach is the Reynolds number

(or in other words the number of points in the computation). For reacting flows,

the choice of the equations, the species (each species will require one additional

conservation equation), the chemical scheme, and the configuration itself is more
complex:

(1) The choice of the conservation equations to solve is open to discussion. Most DNS

of non-reacting flows have been performed for incompressible constant-density

flows. For reacting flows, incompressible (constant density, constant pressure),

low-Mach number (variable density, constant pressure), or fully compressible for-

mulations (variable density, variable pressure) may be used. Although incom-

pressible formulations produce interesting information regarding certain mecha-

nisms present in a turbulent flame, they are limited by the assumption of constant

density and temperature ("cold" flames or zero heat release), which makes their

results too different from real flames in many dynamical aspects. The follow-

ing step for combustion is, therefore, to use a low-Mach number approximation

where pressure is supposed to be constant but density may chaalge because of

heat release (Rutland 1989, Rutland and Trouve 1990, Mahalingam 1989). In

1 C.N.R.S. and CERFACS, France
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this formulation, acoustic waves are eliminated and the time step is not limited

by the classical Courant condition on sound speed, making the formulation espe-

cially well-suited to slow flows (low-Mach number). Finally, performing a fully

compressible computation is also possible and has the advantage of offering an

easier treatment of boundary conditions.

(2) The choice of the number of species to consider and of the chemical scheme is a

source of controversy and speculation. Chemists argue that a realistic computa-

tion of most hydrocarbon fuels combustion requires at least thirty species while

DNS specialists indicate that the numerical constraints of an unsteady computa-

tion in three dimensions make such a computation practically impossible today.

In fact, the choice of the chemical scheme is essentially dependent on the question

to address: studying the folding of premixed flames in low-intensity turbulence

may be done without any chemistry at all (the knowledge of a flame speed is suf-

ficient) while considering pollution problems with DNS will require a reasonably

complete chemical scheme. The latter computation will be much more realistic

(and expensive), but the former may also be quite valuable. Interesting results
on turbulent combustion (Yeung et al. 1990, Cant and Rutland 1990) have been

obtained with codes of the first type (where chemistry is absent).

(3) The choice of the configuration and of the corresponding boundary conditions
leads to additional difficulties. Most DNS of cold flows are performed in periodic

domains. Periodicity is not achieved in most reacting flows, and, therefore, one

must specify new boundary conditions which are compatible with the precision of

DNS and are able to treat inlet and outlet flows, for example. Coupling phenom-

ena between inlets and outlets are quite common in DNS because the numerical

schemes which are used have very low artificial viscosity. Therefore, all waves

(especially numerical or unphysical waves) may travel on the grid and propagate
from the outlet to the inlet (Buell and Huerre 1988, Poinsot and Lele 1992). For

incompressible or low Mach number formulations (Rutland and Ferziger 1989,

Lowery and Reynolds 1987), the specification of boundary conditions which pre-

vent these phenomena requires a fine tuning to be compatible with the pressure
solver used inside the domain. "Convective conditions" may be used near outlets

to satisfy global mass conservation. Another solution is to sacrifice a certain part

of the computational domain near the outlet and use it as a buffer zone where

perturbations are damped by a high artificial viscosity before they reach the out-

let (Ral and Moin 1991). There is a large body of literature on non-reflecting

boundary conditions, and there is no doubt that it is one of the major problems

in the development of DNS codes for reacting flows.

(4) Because of cost considerations, the possibility of performing two-dimensional com-

putations is often used, and the merits of this approach versus three-dimensional
cases remain to be determined. The problem is similar to the choice of a chemical

scheme: first-order arguments such as "Turbulence is always three-dimensional"

do not always lead to sound numerical approaches. The situation here is different

from non-reacting cases where the structure of turbulence is (indeed) intrinsically

three-dimensional. For premixed flames, DNS (Ashurst 1991, Cant and Rutland
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1990) shows that the probability of finding a cylindrical (2D) flame sheet is much

higher than the probability of finding a really 3D spherical flame shape. Two-
dimensional flame geometries appear to be the usual rule in real flames even

though the flow field ahead of these flames is fully three-dimensional. When

one considers the prohibitive cost of three-space dimensional computations for

reacting flows, two-dimensional simulations remain an interesting and fruitful
approach, and the rule at CTR has been to use them as often as possible.

(5) To be complete, a DNS of reacting flows should also include a description of heat

transfer (radiation and convection) because heat losses near flame fronts may be
important when quenching phenomena are considered.

(6) The choice of a numerical algorithm is strongly dependent on the assumptions

used for the computation. In the case of constant density ("cold") flames, the
codes used are the classical incompressible DNS codes for cold flows which are

mostly based on spectral methods. The accuracy of these methods is well known

as well as is their major drawback: the difficulty of using boundary conditions

which are not periodic. Because of this difficulty, recent DNS work has used high-
order finite difference schemes (Lele 1992) or mixed schemes which use spectral

methods in two directions and a finite difference method along the non periodic
direction (Lowery and Reynolds 1987).

2. Achievements

Research at CTR has focused on all aspects of the problem indicated above.

Different approaches have been used and the main accomplishments are summarized
below:

- from CTR experience in DNS of 'cold' flows, specific numerical schemes were

developed for reacting flows. These schemes use either spectral methods (Rut-

land and Trouve 1990) or compact Pade schemes (Lele 1992) to estimate spatial
derivatives. Finite difference schemes have been the most widely used and are
usually fourth- or sixth-order accurate in space. Explicit time-advancement is

used (Runge Kutta). In most practical situations they offer a performance which

is comparable to spectral methods while being much more adapted to the treat-
ment of complex boundary conditions.

- a new technique to implement boundary conditions in DNS codes for reacting
flows was developed from an initial idea valid for inviscid flows (Thompson 1987)
and validated in many different situations (acoustic waves and vortices leaving the

computation box, PoiseuiUe flow, reacting and non reacting shear layers, sub- and
supersonic flow) (Poinsot and Lele 1992). The same method has been used in all

CTR DNS codes for combustion since 1990. It appears that compressible formu-
lations lead to easier treatments of boundaries than incompressible formulations

because waves are explicitly computed and available for boundary conditions.
(Unfortunately, this is achieved at a higher cost).

two-dimensional computations were performed and provided many new insights

into the physics of quenching in premixed turbulent flames (Poinsot et al. 1991)
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and the dynamics of these flames (Haworth and Poinsot 1992). These works were
based on flame-vortex interaction as well as on flame-turbulence interaction.

Simple chemical models have been used (Fresh -* Burnt), but fully compressible

approaches with variable density and large activation energies were utilized for

these computations. Simple models for heat losses were used. These results

have shown that some classical ideas in turbulent combustion theory were not

justified: for example, small scales appear to be much less efficient than expected

from classical analysis. These results have been confirmed later by experiments

(Roberts and Driscoll 1991, Roberts et al. 1993). They have also shown the

importance of thermodiffusive effects even in turbulent flames. The importance
of this mechanism has been confirmed by other methods in separate works (Wu et

al. 1991, Abdel-Gayed et al. 1984, Becket et al. 1990). Effects of flame curvature

were studied and predicted by comparing a DNS with an experiment performed

at Stanford and asymptotic analysis (Poinsot et al. 1992).

- turbulent combustion models have been derived by combining multifractal anal-

ysis and flame vortex interaction results (Meneveau and Poinsot 1991). These
models have been implemented in aircraft and rocket engine computations (Can-

del et al. 1990(a), (b)) as well as in piston engine computations in collaboration
with Institut Francais du Petrole (Boudier et al. 1992). In all cases, the integra-

tion of DNS-based sub-models leads to considerable improvement of the predic-

tion capacities of these codes. In collaboration with Ecole Centrale Paris, a KPP

(Kolmogorov, Petrovski, Piskunov) analysis (Hakberg and Gosman 1984, Fichot

et al. 1993) was used to predict the turbulent flame speed of planar turbulent

premixed flame. The performances of models derived from DNS were analyzed

and compared with classical models (Duclos et al. 1993).

- ignition in turbulent premixed flames was also studied at CTR (Poinsot 1991),

and an ignition model based on this work was implemented and validated in KIVA

(Boudier et al. 1992).

three-dimensional computations were also developed, first in the constant density

case (Rutland and Trouve 1993, Rutland 1989) and later with variable density

and heat release (Trouve and Poinsot 1993). These computations have confirmed

many of the results obtained in two dimensions and brought a large number of in-

trinsically 3D results concerning, for example, flame shape statistics, orientation,

and straining characteristics. More generally, they have been used in many turbu-

lent combustion models (Bray 1990, Bray and Cant 1991, Kostiuk and Bray 1993).

Different collaborations with combustion specialists (Prof. Cant, Dr. Ashurst,

Dr. Hakberg) have taken place in the last three years to exploit these data bases.

They were performed with simple chemical schemes (Fresh _ Burnt).

- two-dimensional computations of flame-wall interaction with simple chemistry

have been performed, and models have been derived from DNS results and applied

in piston engines models (Poinsot et al. 1993).

the feasibility of two-dimensional computations with complex chemistry and pre-

cise transport models was demonstrated in 1992 by coupling the CTR DNS code
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with the SANDIA softwares CHEMKIN (for chemistry) and TRANSPORT (for
viscosity and diffusion coefficients). This code, developed at Ecole Centrale Paris

and CERFACS, was tested at CTR during the 1992 Summer Program. It allows

the simulation of turbulent flames with complex chemistry and was applied to

the prediction of turbulent H2-02 flames with a Warnatz scheme (9 species and
19 reactions) (Baum et al. 1993(a), (b), (c)).

CTR has also investigated other ways to make progress in the field of turbu-

lent combustion and developed a new experiment at Stanford University (Prof.

Bowman) in the field of flame-vortex interaction. The capability of combining
DNS and experiment offers CTR a powerful tool to deal with the problem. This

project is presented by Dr. Mantel and Dr. Samaniego in the following reports.

Although most of the CTR work has focused on premixed flames, diffusion flames

have also been studied, both in the core program (Vervisch 1992) and during
summer programs. Two- and three-dimensional simulations for turbulent diffu-

sion flames have been performed and have allowed the structure analysis of these

flames. The influence of the chemical scheme (one- versus two-step reactions) on

quenching was studied in 1992 (Chen et al. 1992(a)) as well as the validity of

flamelet assumptions (Chen et al. 1992(b), Mell 1990) and pelf models (Fox et aL
1992).

CTR has also contributed to the development of DNS of reacting flows in other

research centers by distributing its basic code (for simple chemistry). This code

is now used at Univ. of Colorado (Boulder), Sandia, Univ. of Madison, Institut
Francais du Petrole, Stanford Univ., Ecole Centrale Paris and CERFACS.

3. Future plans

Two main objectives will be pursued in 1994 at CTR in the field of combustion
research:

(1) Develop and improve CTR models for turbulent combustion

(2) Improve data bases available at CTR to help outside researchers test their own
models.

To reach these objectives, four parallel approaches will be used in 1994:
(1) Flame - vortex interaction:

Flame vortex interaction studies will be pursued, both on the numerical and

on the experimental side. Multiple goals may be reached through this study: to

understand the basic features of flame-vorticity interaction, study flame generated
turbulence, create artificial turbulent flames by sending periodic arrays of vortices

into a flame front, check the validity of DNS by comparing them with experiments,
and use joint experimental and numerical tools to explore larger ranges of parame-
ters. The report of Dr. J. M. Samaniego describes this work in more detail.

(2) Complete three-dimensional data bases:

The work of Dr. Trouvd on three-dimensional data bases for premixed turbulent
flames with heat release has opened new perspectives in the field of turbulent com-

bustion models. Many models have been compared to DNS data bases (Poinsot
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et al. 1992, Cant and Rutland 1990, Trouve and Poinsot 1993) and the ensemble

of data bases and post processing techniques which has been developed has to be

extended and made available to the outside community. Dr. T. Mantel is working

on this problem and a description of his work is given in this report.

(3) Flame wall interaction studies:
The interaction between a cold wall and a flame has numerous practical implica-

tions but is poorly modeled at the present time: one needs to model the effect of

the wall on the flame (possible quenching) but also the effect of the flame on the

wall (increased heat transfer). Both aspects may be attacked using DNS. The first
one was treated at CTR in 1992 (Poinsot and Haworth 1992, Poinsot et al. 1993) in

collaboration with Institut Francais du Petrole (where a model was used for piston

engine cases). In 1994, the study of this problem will be continued by using a full
3D channel flow simulation at CTR to study flame dynamics near a wall with sta-

tionary turbulence. This work will be done in collaboration with CERFACS where

a model for heat transfer will be developed.

4) Stabilization of diffusion flames:
In addition to research dealing with premixed combustion, efforts at CTR also

include investigations concerning nonpremixed combustion. The long term goal of

this work is to provide an understanding of diffusion flame characteristics which

can be used in developing models for large eddy simulations. These fundamental

aspects of diffusion flames include the ignition and stabilization processes, which

will be investigated in simple geometries using direct numerical simulations. The

ignition and stability characteristics will be evaluated under a variety of configu-
rations: a laminar flame where the triple-flame structure can be investigated; a

shear layer where the effect of the splitter plate wake on the flame properties can
be determined; and in analogy with the premixed studies, the effect of vortices on

the above configurations will also be studied in order to examine possible quench-

ing events. These areas are currently being investigated by Dr. G. Ruetsch using

one-step chemical models. If need be, implementation of multiple-step chemistry

(Chen et al. 1992(b)) can be included.

REFERENCES

ABDEL-GAYED, R. G., BRADLEY, D., HAMID, M. N. & LAWES, M. 1984 Lewis

number effects on turbulent burning velocity. 20th Symposium (International)

on Combustion. The Combustion Institute, 505-512.

ASHURST, W. T. 1991 SIAM Conference on Numerical Combustion

BAUM, M., HAWORTH, D. & POINSOT, T. 1993(a) Direct Numerical Simulation

of turbulent H2-O2-N2 flames. 9th Turbulent Shear Flows.

BAUM, M., HAWORTH, D. & POINSOT, T. 1993(b) Direct Simulation of turbulent

flames with complex chemistry. J. Fluid Mech. Submitted.

BAUM, M., HAWORTH, D. & POINSOT, T. 1993(c) Using Direct Numerical Sim-

ulation to study H2/O2/N2 flames with complex chemistry in turbulent flows.

Fifth Int. Conference on Numerical Combustion.



The combustion program at CTR 201

BECKER, H., MONKHOUSE, P., WOLFRUM, J., CANT, R., BRAY, K., MALY, R.

& PFISTER, W. 1990 Investigation of extinction in unsteady flows in turbulent

combustion by 2D LIF of OH radicals and flarnelet analysis. 23rd Syrup. (Int.}
on Combustion. The Combustion Institute, Pittsburgh.

BOUDIER, P., HENRIOT, S., POINSOT, T. _ BARITAUD, T. 1992 A model for

turbulent flame ignition and propagation in piston engines.. 2$th Syrup. (Int.)
on Combustion. The Combustion Institute, Pittsburgh, 503-510.

BRAY, K. N. C. 1990 Studies of the turbulent burning velocity. Proc. R. Soc.
Lond. A. 431,315-335.

BRAY, K. N. C. & CANT, R. S. 1991 Some applications of Kolmogorov's tur-

bulence research in the field of combustion. Proc. Roy. Soc. A London. A. N.
Kolmogorov Special Issue.

BUELL, J. _ HUERRE, P. 1988 Absolute instability of a shear layer. Proceed-

ings of the 1988 Summer Program. Center for Turbulence Research, Stanford
Univ./NASA-Ames, 19-27.

CANDEL, S., VEYNANTE, D., LACAS, F., MAISTRET, E., DARABIHA, N. &

POINSOT, T. 1990(a) Recent advances in combustion modeling. In Series on

advances in mathematics for applied sciences. B. E. Larrouturou, World Sci-
entific, Singapore.

CANDEL, S., VEYNANTE, D., LACAS, F., MAISTRET, E. & POINSOT, T. 1990(b)

Flamelet concepts in turbulent combustion modeling. 9th International Heat
Transfer Conference.

CANT, R. S. & RUTLAND, C. 1990 Statistics for laminar flamelet modeling. Pro-

ceedings of the 1990 Summer Program. Center for Turbulence Research, Stan-
ford Univ/NASA-Ames, 271-279.

CHEN, J. H., MAHALINGAM, S., PURl, I. & VERVISCH, L. 1992(a) Effect of finite

rate chemistry and unequal Schmidt numbers on turbulent non-premixed flames

models with single step chemistry. Proceedings of the I99_ Summer Program.

Center for Turbulence Research, Stanford Univ./NASA-Ames, 367-388.

CHEN, J. H., MAHALINGAM, S., PURl, I. & VERVISCH, L. 1992(b) Structure

of turbulent non-premixed flames modeled with two-step chemistry. Proceed-

ings of the 1992 Summer Program. Center for Turbulence Research, Stanford
Univ./NASA-Ames, 389-402.

DUCLOS, J. M., VEYNANTE, D. &: POINSOT, T. 1993 A comparison of flamelet

models for premixed turbulent combustion. Combust. Flame. 95, 101-118.

FICHOT, F., LACAS, F., VEYNANTE, D. _ CANDEL, S. 1993 One-dimensional

propagation of a premixed turbulent flame with the coherent flame model. Corn-
bust. Sci. Tech. 89, 1-26.

Fox, R., GAO, F., MOSER, R., ROGERS, M. & HILL, J. 1992 Stochastic mod-

eling of turbulent reacting flows. Proceedings of the 1992 Summer Program.

Center for Turbulence Research, Stanford Univ./NASA-Ames, 403-425.



202 T. J. Poinsot

HAKBERG, B. _ GOSMAN, A. D. 1984 Analytical determination of turbulent flame

speed from combustion models. _Oth Symposium (International) on Combus-

tion. The Combustion Institute, Pittsburgh, 225-232.

HAWORTH, D. C. _ POINSOT, T. J. 1992 Numerical simulations of Lewis number

effects in turbulent premixed flames. J. Fluid Mech. 244, 405-436.

KOSTIUK, L. & BRAY, K. 1993 Mean effects of stretch on laminar flamelets in a

premixed turbulent flame. Combu_t. Flame. Submitted.

LELE, S. 1992 Compact finite difference schemes with spectral like resolution. J.

Comput. Phys. 103, 16-42.

LOWERY, P. AND REYNOLDS, W. C. 1987 Passive scalar entrainment and mixing

in a forced, spatially developing mixing layer. 25th AIAA Aerospace Sciences

Meeting.

MAHALINGAM, S. 1989 "Non-premixed combustion: full numerical simulation of a

coflowing axisymmetric jet, inviscid and viscous stability analysis". PhD Thesis,

Stanford Univ.

MELL, W. E., KOSALY, G., PLANCHE, O., POINSOT, T., _FERZIGER, J. H.

1990 Laminar Flamelet Modeling of Turbulent Diffusion Flames. Proceedings of

the Summer Program. Center for Turbulence Research, Stanford Univ./NASA-

Ames, 255.

MENEVEAU, C. _L POINSOT, T. 1991 Stretching and quenching of flamelets in

premixed turbulent combustion . Combust. Flame. 86, 311-332.

POINSOT, T. 1991 DNS and modeling of ignition in turbulent flows. Annual Re-

search Briefs-1991. Center for Turbulence Research, Stanford Univ./NASA-

Ames.

POINSOT, T., ECHEKKI, T. _ MUNGAL, M. G. 1992 A study of the laminar flame

tip and implications for premixed turbulent combustion. Combusf. Sci. Tech.

81, 45-73.

POINSOT, T. &: HAWORTH, D. 1992 DNS and modelling of the interaction between

turbulent premixed flames and walls. Proceedings of the Summer Program. Cen-

ter for Turbulence Research, Stanford Univ/NASA-Ames, 307-324.

POINSOT, T., HAWORTrl, D. & BRUNEAUX, G. 1993 DNS and modelling of flame-

wall interaction. Combust. Flame. 95, 118-133.

POINSOT, T. & LELE, S. 1992 Boundary conditions for direct simulations of com-

pressible viscous flows. J. Comput. Phys. 101, 104-129.

POINSOT, T., VEYNANTE, D. & CANDEL, S. 1991 Quenching processes and pre-

mixed turbulent combustion diagrams. J. Fluid Mech. 228, 561-605.

POINSOT, T., VEYNANTE, D., YIP, B., Taouvl '_, A., SAMANIEGO, J.-M. &

CANDEL, S. 1992 Active control: an investigation method for combustion in-

stabilities. J. Phys. III. July, 1331-1357.



The combustion program at CTR 203

RAI, M. M. & MOIN, P. 1991 Direct numerical simulation of transition and turbu-

lence in a spatially evolving boundary layer. AIAA lOth Comp. Fluid Dynamics

Conference. AIAA Paper 91-1607.

ROBERTS, W. L. & DRISCOLL, J. F. 1991 A laminar vortex interacting with a

premixed flame: measured formation of pockets of reactants. Combust. Flame.

87, 245-256.

ROBERTS, W. L., DRISCOLL, J. F., DRAKE, M. C. & Goss, L. P. 1993 Im-

ages of the quenching of a flame by a vortex: to quantify regimes of turbulent

combustion. Combust. Flame. 94, 58-70.

RUTLAND, C. J. 1989 "Effect of strain, vorticity and turbulence on premixed

flames". Ph.D. Thesis, Stanford Univ.

RUTLAND, C. J. & FERZIGER, J. 1989 Interaction of a vortex and a premixed

flame. 27th AIAA Aerospace Sciences Meeting.

RUTLAND, C. J. & TROUVE, A. 1990 Pre-mixed flame simulations for non-unity

Lewis number. Proceedings of the Summer Program. Center for Turbulence

Research, Stanford Univ./NASA-Ames, 299-309.

RUTLAND, C. J. & TROUVE, A. 1993 Pre-mixed flame simulations for non-unity

Lewis number. Combust. Flame. 94, 41-57.

THOMPSON, K. W. 1987 J. Comput. Phys. 68. 1-24.

TROUVE, A. & POINSOT, T. 1993 The evolution equation for the flame surface

density. J. Fluid Mech. Submitted.

VERVISCH, L. 1993 Study and modelling of finite rate chemistry effects in turbulent

non premixed flames. Annual Research Briefs-1992. 411-431.

Wu, M. S., KWON, S., DRISCOLL, J. F. & FAETH, G. M. 1991 Preferential

diffusion effects on the surface structure of turbulent premixed hydrogen/air

flames. Combust. Sci. Tech. 78, 69-96.

YEUNG, P. K., GIRIMAJI, S. S. & POPE, S. B. 1990 Straining and scalar dissi-

pation on material surfaces in turbulence: implications for flamelets. Combust.

Flame. 79, 340.





Center for Turbulence Research
Annual Research Briefs 1993

¢

5'

205

Stretch-induced quenching
in flame-vortex interactions

By J.-M. Samaniego

1. Motivation and objectives

The flame-vortex interaction problem is a natural configuration in which several
issues relevant to turbulent combustion can be addressed: effect of strain-rate and

curvature, effect of the Lewis number, effect of heat losses, effect of compiex chem-

istry, and flame-generated turbulence (Jarosinski et al. 1988, Rutland and Ferziger
1991, Poinsot et al. 1991, Roberts and Driscoll 1991, Roberts et al. 1993, Wu and

Driscoll 1992, Lee et al. 1993, Lee and Santavicca 1993). In such an approach, the
interaction of an isolated vortex with a laminar premixed flame is viewed as a unit

process of a turbulent premixed flame in which the reaction zone keeps a laminar-
like structure locally; this is precisely the case of the wrinkled flame or flamelet

regime in turbulent combustion (Williams 1985, Borghi 1988).
Poinsot et al. 1991 have carried out numerical simulations of a two-dimensional

flow field where a vortex pair is convected through a laminar premixed flame. The

authors identified three regimes of interaction depending on the ratios uo/St and
d/6t (where uo and d are the velocity perturbation and size of the vortex pair,

and St and 6t are the flame speed and flame thickness): 1) for small values of

uo/St and d/St, the flame front is nearly unaffected; 2) for an intermediate range
of these parameters, the flame front is wrinkled and pockets of unburnt mixture

surrounded by burnt gases are formed; 3) for higher values, the flame front can be

locally quenched in the presence of heat losses. These results were confirmed by

experimental observations (Roberts and Driscoll 1991, Roberts et al. 1993).
The present work complements previous studies and involves the study of the in-

teraction of a vortex pair and a laminar premixed flame in a planar two-dimensionai

geometry, together with numerical simulations. This geometry is quite unique since

most studies have considered axisymmetric vortex rings. Such a geometry offers
several advantages over previous studies:

• line-of-sight measurement techniques such as schlieren flow visualization, CH

emission imaging, and infrared emission imaging can be used in order to obtain
quantitative data: schlieren flow visualization can be used to determine the flame

surface area; imaging of the light emission from electronically excited CH radicals in

the reaction zone can be used to infer the reaction rate field (John and Summerfield

1957, Diederichsen and Gould 1965, Hurle et al. 1968, Poinsot et al. 1987, Yip and

Samaniego 1992, Samaniego et al. 1993); near-infrared emission from water vapor
in the 700 - 1200 nm range can be used to obtain the temperature field in the burnt

gases. In addition, laser-based diagnostics such as particle image velocimetry to

measure the velocity field or Rayleigh scattering as an alternative way of measuring
the temperature field can be applied.
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• ensemble-averaging of several realizations can be performed in order to im-

prove the signal-to-noise ratio.
• quantitative comparisons with a two-dimensional code described in Poinsot et

al. 1991 can be undertaken. This would allow to separately study the effects of non-

unity Lewis numbers, heat losses, and complex chemistry. In particular, the validity

and applicability of reduced chemical schemes for direct numerical simulation of

turbulent premixed flames can be tested.
• in parallel to the single events where an isolated vortex pair interacts with a

premixed flame, multiple vortex-flames interactions can be studied as an exarnple

of single-scale turbulence-flame interactions.
This paper presents initial experimental results of flame-vortex interactions. It

is shown that, under certain circumstances, the flame undergoes a quenching-

reignition process where quenching is associated to an excessive stretching of the
flame front.

2. Accomplishments

_.1 Experimental facility

An experimental facility with a two-dimensional flow has been developed. The

test section comprises a vertical duct with a square cross-section of 63.5 x 63.5 turn,

equipped with quartz windows for optical access (see Fig. 1). A mixture of propane
or methane and air is fed into the test section through a contoured converging

nozzle. Combustion is stabilized on an electrically-heated Nichrome wire of 0.5 tara

diameter, resulting in a V-shaped flame. A vortex pair is generated by acoustic

excitation through a 3 ram wide contoured slot located in the left wall. At time

t = 0, a single pulse is sent to the speaker. The pulse is generated by filtering and

amplifying a TTL pulse. The resulting signal is a ramp with a rise time of 1 ms. The
slot has a rectangular shape and spans the entire lateral wall. In the present study,

the aspect ratio of the slot was approximately 21 : 1. Conceptually, the resulting

vortex pair is two-dimensional, spans the entire test section, and is parallel to the
Nichrome wire. As a consequence, the flow field during a flame-vortex interaction

is expected to be two-dimensional.
Several parameters control the interaction of the vortex with the flame, including

the type of fuel, the equivalence ratio (_), the flow velocity of the fuel-air stream

(V0), the flame thickness (6t) and flame speed ($1), the size of the vortex core (de),
and the maximum rotational velocity of the vortex (u0). Using methane or propane

allows possible Lewis number (Le) effects to be investigated.
In the absence of velocity measurements, it is difficult to give a definite value for

the maximum velocity perturbation u0 induced by the vortex pair. However, based

on smoke visualizations of the vortex pair in the absence of flame, a schematic

diagram of the vortex pair has been developed (Fig. 2) (Samaniego 1993). In

this case, the following relationship holds: u0 = 4Vd, where Vd is the self-induced

velocity of the vortex pair.

Qualitative flow visualization showing both the position of the vortex pair and of

the flame during the interaction has been performed with a schlieren arrangement.
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FIGURE 1. Schematic view of the test section.

The light source was a flashlamp delivering 0.1 ms duration pulses. The schlieren

image was recorded by a TM540 PULNIX video camera and VCR. The images were

later digitized on a PC AT equipped with a DT-2851 digitizing board. A timing

circuit allowed delaying the light pulse from the vortex generation so that images
could be taken at different instants during the interaction.

Global emission measurements were done using a Hamamatsu 1P28A photomul-
tiplier tube equipped with an interference filter isolating light emission from CH

radicals from the 2A ---, 2E transition at 431.5 nm. A second PC AT equipped with

a DT-2828 acquisition board was used to digitize the photomultiplier signal (typ-
ically, 1000 samples at a rate of 10,000 samples�s). Acquisition was synchronized
with the vortex generation event.

2.2 Results and discussion

2. _. 1 Schlieren flow visualization

Figure 3 shows a sequence of sehlieren images of a flame-vortex interaction along
with the overall reaction rate. This latter quantity was inferred from the CH
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FIGURE 2. Vortex pair topology, a) light sheet illumination of a smoke pattern

(from Samaniego 1993) - b) schematic diagram of the vortex pair.

emission from the entire flame. Fifty realizations were averaged and the standard

deviation computed in order to check the repeatability of the interaction. In this

case, the operating conditions are: fuel=C3Hs, ¢ = 0.55, Vo = 0.35m/s, 5t = 1 rnrn,

St = O.12rn/s, dc = 3ram, uo = 24m/s, Le = 1.8, resulting in uo/St = 200,

d/61 = 3.

The first image shows the position of the unperturbed V-shaped flame. The flame

is slightly curved towards the burnt gases due to confinement. The second image

is taken 4.8 ms after acoustic excitation. A starting vortex pair is rolling-up. The

flame already senses the presence of the vortical structure and starts straightening

out. This can be attributed to mass-conservation and to a Biot-Savart effect induced
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Sequence of schlieren images. See caption on next page for more
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FIGURE 3. Flame-vortex interaction: fuel= C3Hs, ¢ = 0.55, V0 = 0.35re�s,

_i = 1ram, St = 0.12re�s, dc = 3ram, uo = 24m/s, Le = 1.8 (uo/S! = 200,

dc/6t = 3). a) Sequence of schlieren photographs showing the evolution of the
reacting flow field (see previous page) - b) evolution of the corresponding I/Io,
where I is the mean global CH emission averaged over 50 realizations, and I0 is the
initial value of I. The numbered circles correspond to the schlieren photographs -

c) evolution of V_/lo, where V_ is the standard deviation of I, the global CH
emission signal computed from 50 realizations, and I0 is the initial value of I.

by the vortex pair. The next 12 images are taken 1.2 ms apart and show the
evolution of the flame-vortex interaction.

From both the schlieren pictures and the standard deviation of the photomul-

tiplier signal, two phases of the flame-vortex interaction can be identified: 1) an

initial phase lasting until approximately t = 13.2ms, where the flow field is two-
dimensional and repeatable, and during which the flame surface area increases while

the reaction rate remains constant; 2) a second phase in which the flow field starts

becoming three-dimensional, is less repeatable, and during which the reaction rate

increases significantly.
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During the first phase, the vortex pair propagates toward the flame front and

reaches it at t = 10.8 ms. The flame front becomes more distorted as the vortex

follows its path. The arc length of the flame contour increases steadily, while the re-

action rate remains nearly constant. The vortex pair is followed by a wake featuring
a Kelvin-Helmholtz instability.

The second phase starts at t = 13.2 ms, when the schlieren image becomes blurred
around the vortex pair. In the vortex wake is an elongated flame front which also

becomes blurred at t = 15.6 ms. This phase is characterized by a 40% increase of

the overall reaction rate. The blurring of the schlieren pattern is due to combustion
within the vortex pair.

The existence of two phases compares well with previous results obtained by

Jarosinski el al. 1988, for the interaction of a vortex bubble with an upward prop-
agating laminar flame. The authors associated each phase of the interaction with

a physical mechanism and a time scale: first, a mixing time, rm, during which en-
trainment of burnt material into the vortex core takes place, then a combustion

time, vc, after ignition of the vortex core. They found that rc is weakly dependent

on the mixture composition of the vortex and that r_ " rm. They concluded that
the interaction is essentially controlled by fluid mechanical processes. Jarosinski et

al. speculated that, during the first phase, the flame front is quenched by excessive

stretching ahead of the vortex bubble. This assumption is checked and proved to
be correct in the following section. However, the way combustion is initiated in the

second phase and the structure of the reaction zone during this ignition process,
whether it is flamelet-like or distributed over a volume, are still unknown.

_.g.g Flame quenching and Lewis number effect

In order to address the issue of whether or not the flame front is locally quenched,

the relationship between the flame surface area, _, and the overall reaction rate,
W, is investigated. For this purpose, _ was deduced from the arc length of the

flame contour measured on the schlieren images. Only the images taken in the first
phase, where the flow field is two-dimensional, have been considered.

It appears that W lags _ by about 5 milliseconds (Fig. 4). Furthermore, while
increases by 40 %, W remains within 1% of its initial value. Since the reaction

zone is flamelet-like during the first part of the interaction, as demonstrated by the
schlieren pictures, W can be defined as follows:

W = _wds

where w is the local burning rate per unit surface. If we assume that to is constant
then

W=w_

and W is proportional to E which is in contradiction with the observation. Conse-

quently, to must decrease locally in order to balance the increase of Z. This can be
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FIGURE 5. Evolution of wv/wo, where wv is the mean reaction rate per unit

surface along the distorted flame front, and w0 is the initial value of wv. The

operating conditions are the same as in Fig. 3.

quantified by defining wv as the average wdue of w along the distorted part of the

flame front. We obtain:

_v W_ _o
"_0 _ W0

with

w, = w - WoO - D/So) and S_ = _, - r_o(Z- D/So)



Stretch-induced quenching in flame.vortez interactions 213

Kv(s-')

8O0

60O

4O0

2O0

0

-200

' ' ' ' I , , , ,C_,, ,, i , , , ,0

"1 I i i I I I I I f I 1 I i I I i * !

0 5 10 15 20

time (ms)

FIGURE 6. Evolution of mean stretch rate along the distorted flame front (K_).
The operating conditions are the same as in Fig. 3.

where w0, W0, and _0 are the initial values of the local reaction rate, of the global
reaction rate, and of the flame surface area, respecSively, and D is the size of the

vortex pair = 12 turn, as measured on the schlieren images. Wv and _v represent

the reaction rate and flame surface area of the portion of the flame affected by the
vortex. It appears that w_ decreases significantly to 20% of the initial value at the

end of the first phase (Fig. 5). Similarly, an average value K. for the stretch rate

along the distorted front can be estimated by:

1 dE.
g v -

Ev dt

Figure 6 shows that K_ reaches a maximum value of about 700 s -1 at t = 10 ms.

In comparison, the stretch rate leading to the extinction of a propane-air flame at

¢ = 0.55, measured experimentally by Law etal. 1986 for a steady counterflow

configuration, is an order of magnitude lower. Although unsteady effects, inherent

of the present experiment, may play an important role and lead to different values

of the extinction stretch rate, as indicated by Darabiha's work on the transient

behavior of counterflow hydrogen-air diffusion flames (Darabiha 1992), the previous

observation suggests that the flame front ahead of the vortex pair is quenched by

excessive stretching. The same argument applies for various cases with the propane

flame, where us�St was varied between 90 and 350 (the corresponding maximum

stretch rates varied from 400 s -1 to 1500 s-l).

In order to study the effect of the Lewis number, experiments also have been

performed on a methane-air flame. The operating conditions were: fuel= CH4,

= 0.55, V0 = 0.35re�s, 6t = 2mm, St = O.07m/s, dc = 3mm, us = 11 and
24 m/s, Le = 0.96.

In this case, the relationship between W and _ changes when varying the ratio

us�St. When us�St = 160 (us = 11 m/s), W is approximately proportional to

during most of the first phase, and when us�St = 340 (us = 24 re�s), there is a
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FIGURE 7. Methane-air flame. Evolution of W/Wo ( _ ) and E/E0 ( o ), where
W is the overall reaction rate, E is the total flame surface area, and the subscript

0 refers to the value at time t = 0. The conditions are: fuel = Ctt4, _ = 0.55,

V0 -- 0.35m/s, 6: = 2rnm, St = 0.07rn/8, dc --- 3turn, Le = 0.96. a) ue = 11 rn/s

(ue/St = 160). b) ue = 24m/s (ue/St = 340)

time lag between W and E, as observed in the propane flame (Fig. 7 a and b). A
transition in the response of the flame occurs when the vortex strength is increased.
This difference in behavior can be seen in wv, the average value of the reaction rate:

_av remains practically constant for the slower vortex pair, whereas it decreases

significantly for the faster vortex pair (Fig. 8). The different behavior is due to
a difference in stretch rates during the interaction. For uo/Si = 340, K, reaches

values of 800 8-1, whereas for uo/Si = 160, K_ remains under 200 s -1 , and even

under 100 s -1 during most of the first phase. Since the extinction stretch rate of a
methane-air flame at _ = 0.55 is around 100-200 s-I, it can be concluded that, in

the case of the faster vortex, the flame is locally quenched by excess of stretch. In

contrast, in the case of the slower vortex, the stretch rate experienced by the flame
front is lower or of the order of the extinction stretch rate. The local reaction rate
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• : uo/St = 340. a) Evolution of w,,/wo, where wv is the mean reaction rate

per unit surface along the distorted flame front, and w0 is the initial value of wv - b)
Evolution of mean stretch rate along the distorted flame front (Kv). The operating

conditions are the same as in Fig. 7.

is weakly affected and W is approximately proportional to E.

The different response of the propane- and methane-air flames can be attributed

to some extent to an effect of the Lewis number. During the interaction, both flames

are positively stretched, and as suggested by the stretched flame theory, a positively

stretched Le > 1 flame should be quenched more easily than a Le < 1 flame (Clavin

1985, Law 1988, Chung and Law 1988, Chung and Law 1989). Following Law, we

obtain:

61 1 _ 1) Ka
wv/wo = 1 - E + (-_e (2T=dlT,)

where w0 is the initial reaction rate, R_ is the average radius of curvature (R_ > 0

when the flame front is convex towards the burnt gases, and Rv < 0 when the
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flame front is convex towards the cold gases), Ka is the Karlovitz number defined

by Ka = sK--_, Tad is the adiabatic flame temperature, and Ta is the activation

temperature. The influence of curvature is a consequence of flow divergence through

a flame front having a finite thickness and does not involve the Lewis number. This

term has probably the same influence on both the propane- and methane-air flames,

hence its effect is not discussed here. In contrast, the influence of stretch on the

flame response depends on the Lewis number. When Le > 1, the reaction rate is

decreased by a positive stretch and quenching occurs by cooling of the flame. This

is the case of the propane flame for which Le = 1.8. When Le < 1 or close to 1

which is the case of the methane flame, the mechanism for quenching is not so well

established. When positively stretched, the flame will experience an increase of its

burning rate and of its temperature. Stretch-induced quenching may or may not be

expected depending on whether the flame is considered restrained or unrestrained

(Law 1988). If the flame is restrained, for example in a stagnation point flow, the

flame is quenched by incomplete reaction (Darabiha et al. 1986, Law 1988). If the

flame is unrestrained, which is the case in the experiment, incomplete reaction is

prevented: quenching cannot result only from excessive stretching, but more likely

from the combination of stretch with other phenomena such as heat loss and finite-

rate kinetics. To summarize, it appears that the effect of the Lewis number explains

why the propane flame is quenched more easily than the methane flame, but it does

not provide a definite explanation for the quenching of the methane flame.

It is interesting to note that Poinsot et at. 1991, in their numerical study of

flame-vortex interactions, have found that radiative heat losses are the controlling

mechanism for flame qllenching irrespective of the value of the Lewis number. Fol-
lowing this analysis, Roberts et al. 1993 have characterized the effect of radiative

heat losses from the burnt gases in their experiment, and although showing that

Poinsot et al. had overestimated the value of the heat losses in their simulations,

concluded that they play an important role in flame quenching. The authors also

reported an unexpected finding: they would observe quenching in the case of a

lean methane-air, but not in the case of a lean propane-air flame. This is in con-

tradiction with our own findings as well as with the stretched flame theory. They

attributed this apparent anomaly to complex chemistry effects. It appears that the

mechanisms leading to flame quenching are not yet well established, and that this

problem needs further investigations.

3. Future plans

Further investigations of the mechanisms controlling the flame response are being
conducted. In particular, the effects of the Lewis number and of heat losses will be

studied. Future experiments will involve quantitative imaging of the reaction rate

field using an intensified CCD camera equipped with a filter isolating the radiation of

CH radicals. A particle image velocimetry system will provide the velocity field, and

imaging of the near-infrared radiation of water vapor will be used for the measure

of the temperature field in the burnt gases. Comparison with direct numerical

simulations will be performed in order to study separately the effects of non-unity
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Lewis number, heat losses, and complex chemistry. The validity and applicability

of reduced chemical schemes for direct numerical simulation of turbulent premixed
flames will also be tested.
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A transport equation for the scal 7

reacting flows with variable density: first results

By T. Mantel

1. Motivation and objectives

1.1 Introduction

Although the different regimes of premixed combustion are not well defined, most

of the recent developments in turbulent combustion modeling are led in the so-

called flamelet regime. The goal of these models is to give a realistic expression to

the mean reaction rate (u3). Several methods can be used to estimate (u3). Bray

and coworkers (Libby & Bray 1980, Bray 1985, Bray _ Libby 1986) express the

instantaneous reaction rate by means of a flamelet library and a frequency which

describes the local interaction between the laminar flamelets and the turbulent flow

field. In another way, the mean reaction rate can be directly connected to the flame

surface density (_). This quantity can be given by the transport equation of the

coherent flame model initially proposed by Marble & Broadwell 1977 and developed

elsewhere (Pope 1988, Candel & Poinsot 1990, Trouv6 &: Poinsot 1992, Bidaux et al.

1993). The mean reaction rate, (_b), can also be estimated thanks to the evolution

of an arbitrary scalar field G(x, t) = Go which represents the flame sheet. G(x, t) is

obtained from the G-equation proposed by Williams 1985, Kerstein et al. 1988 and

Peters 1993. Another possibility proposed in a recent study by Mantel &: Borghi

1991, where a transport equation for the mean dissipation rate (ec) of the progress

variable c is used to determine (u)).

In their model, Mantel K: Borghi 1991 considered a medium with constant den-

sity and constant diffusivity in the determination of the transport equation for (ec).

A comparison of different flamelet models made by Duclos et al. 1993 shows the

realistic behavior of this model even in the case of constant density. Our objective

in this present report is to present preliminary results on the study of this equation

in the case of variable density and variable diffusivity. Assumptions of constant

pressure and a Lewis number equal to unity allow us to significantly simplify the

equation. A systematic order of magnitude analysis based on adequate scale rela-

tions is performed on each term of the equation. As in the case of constant density

and constant diffusivity, the effects of stretching of the scalar field by the turbu-

lent strain field, of local curvature, and of chemical reactions are predominant. In

this preliminary work, we suggest closure models for certain terms, which will be

validated after comparisonswith DNS data.

1.2 The role of scalar dissipation for premixed turbulent combustion

For the prediction of chemical reactions in premixed media, the dissipation time

scale of the concentration (or the temperature) fluctuations rc and of the turbulent

kinetic energy rt are crucial quantities. Nevertheless, in most turbulent combustion
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models (fiamelets models, presumed pdf approach) where these scales are taken into

account, proportionality between these quantities is very often assumed. Although,

numerous experimental studies show that the ratio of these two scales is not a
constant and varies for different flows (see Beguier e$ al. 1978).

One way of calculating the dissipation time scale of a scalar is to use a transport
Oc' Oc'

equation for the dissipation of the fluctuations of this scalar (ec) = (d_-_z, _z-_z_)

(where d is the molecular diffusivity and c' the fluctuation of c; c is defined to be
equal to 1 in the burnt gases and to 0 in the fresh gases). Starting from the studies
of Zeman & Lumley 1976, Borghi & Dutoya 1978 used this equation to investigate

the case of a steady premixed flame. But the use of such an equation requires the

modeling of many terms and very httle knowledge exists to assess the adequacy of
these models.

More recently, Mantel & Borghi 1991 have developed a transport equation for

(ec) in the case of constant density and constant diffusivity. An order of magnitude
analysis based on appropriate scale relations shows that the effects of stretching
of the concentration field by the small scales of turbulence and the effects of local

curvature are predominant. The authors present new closures for these terms in
order to take into account the presence of laminar flamelet within the flow.

The applications of such an equation are significant and of fundamental interest:

1- In the particular case of high DamkShler number, Da = rt/rch where rch is a
chemical time scale, Bray & Moss 1977 and Borghi 1978 have demonstrated that

(t/,) and (e_) are directly related:

where,

(ec) (1.1)(w) = 1
-- -- bo
2

bo = [¢U1
c(v( c )dc

o1 (v( c)dc

In accordance with Bray & Moss 1977, the equation for (e_) leads to a transport

equation for the mean reaction rate and to a new formulation of the well known

Eddy Break-Up model.
2- Moreover, in the flamelet regime, (e_) and (_) can be directly connected by

(ec) (X SL(_]) (see Borghi 1990), where SL is the laminar flame velocity. Thus,
a transport equation for (E) is obtained in a different way from those proposed

by other studies (Marble & Broadwell 1977, Candel & Poinsot 1990, Trouvd &

Poinsot 1992, Bidaux et al. 1993).

3- Furthermore, the knowledge of the dissipation time scale for the scalar allows
Mantel et al. 1993 to propose a new model for the equation for the correla-

tion (u'ic') which is another crucial problem in turbulent modeling that is often
underestimated.
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2. Accomplishments

We present in this section the different steps and assumptions leading to the
equation for (co).

The methodology chosen here to calculate the transport equation for (Ec) is

to first establish the instantaneous equation for Ec = d oe Oc
Oxi _xi" An averaging

operation and an order of magnitude analysis of this equation will lead directly to
the equation for (ec>.

_.I Preliminaries

In order to determine the transport equation for E_, some assumptions are made.

A perfectly premixed medium is considered and a single chemical reaction occurs

in the flow which can be described by: Fuel + Oxydizer "'* Product,.

From the instantaneous transport equation for the progress variable c:

Oc Uk Oc = 1 0 ( Oc )-_ + o_ _o%--;pd-_ + w (2.1)

The transport equation for Ec is obtained by differentiating Eq. (2.1) with respect
Oc

to xi and by multiplying the result by dc,i, where c,i represents _x/" After some
algebra, the transport equation for E_ leads to:

0Ec - 0Ec OUk 1 0 z OEc\

+ uk_ = c,c,,a, + vk_c,,c,, - 2dc,,c,_ + _ _ [p___;_)

+ - Eo - o.

OX k "+ 2dc,itb,i

(2.2)
Obviously, Eq. (2.2) involves unclear correlations and cannot be used directly. New

assumptions are needed in order to simplify Eq. (2.2) and to clarify the physical

meaning of its terms. Let us consider setting the Lewis number equal to unity,
no heat losses, and a constant pressure. Concerning this last assumption, even if a

pressure drop occurs across a laminar flame, it is so weak that the density variations

are essentially due to temperature variation across the flame front. This assumption

could only be put into question in case of strong pressure waves spreading into the
flame front (i.e. knock in I.C. engines).

In case of a Lewis number equal to unity and no heat losses, the temperature and
the progress variable are directly related by:

T = T0(1 + Oc) (2.3)

where 0 is the heat release parameter: 0 -- Tad -- TO
To , Tad and To represent respec-

tively the adiabatic temperature and the temperature of the fresh gases.
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Due to assumptions of constant pressure, unit Lewis number, and no heat losses,

density and diffusivity derivatives can be related to the progress variable derivatives

which allow to simplify Eq. (2.2).

The assumption of constant pressure and Eq. (2.3) imply:

P,k : --P l-"-'_C,k
(2.4)

Op,i 02 0 Oc,i (2.5)
Ox--'-_= 2P(1 + Oc)2 c,ic,k - P'I + Oc Oxk

and allow us to replace in Eq. (2.2) the density derivatives by the progress variable

derivatives.
The diffusivity derivatives can be solved by considering that the dynamic viscosity

p is only a function of the temperature, for example:

# = Po (2.6)

where b is a constant equal to 0.76. The dynamic viscosity at temperature To is

denoted by p0. Thus, the first and second derivatives for the molecular diffusivity
can also be related to the first and second derivatives of the progress variable:

0 (2.7)
d,k = (1 + b)d_c,k

0_d 02 0 0% (2.8)
i:gx2 = b(b+ 1)(1 + 0c)2dc kc,k+ (b+ 1)] + OcOx 2

02 0 Oc,i
Od,i = b(b + 1) dc,ic,k + ( b + (2.9)
0x--'-k (1 + Oc)2 1)_ + Oc Oxk

Substituting these new expressions for the derivatives of the density and molecular

diffusivity, Eq. (2.2) becomes:

OEc OEc 0 ,' OE¢ ". OUk DU_,

02 _ 02c- 2bp( 1 + 0c)2 E_ + (1 + b)p dEc

0 2 Oc,_ Oc,i Oc,_
- 2(2 + b)Pl--T_d c,ic,k_x k 2pd'Zoxk Oxk

+ 2pdc,id,,i

(2.!0)

In Eq. (2.10), derivatives of density and diffusivity disappear and a physical

meaning of the terms of Eq. (2.10) can be seen more clearly. But before we give

physical meanings to these terms and propose closures, averaging operations and
an order of magnitude analysis are performed. We will see that the instantaneous

gradients of c are predominant and allow us to derive an equation for (to).
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_._ Averaging and order of magnitude analysis

_._.1 Preliminaries and scale relations

First, we decompose the velocity and the progress variable into a mean value

and a fluctuating component (i.e. for c, we have c = (c) + c' where (c) = p---_is
P

the Favre averaging, and by definition (d) = 0). The order of magnitude analysis

needs appropriate scMe relations which take into account the presence of chemical

reactions in the fluid. For the gradient of the velocity, the approach of Tennekes &

Lumley 1972 (pp 88-92) for the vorticity equation is retained. These scale relations
¢

O(Uk) u' Ouk u'
are _ cx _t and _ cx _ where It and ,_ are respectively the integral length

scale and the Taylor microseale of the turbulence.

For the quantities related to the concentration flow field, the problem is more

subtle. Because chemical reactions occur within the flow, we have to take into

account the existence of flamelets in the turbulent flow field in order to estimate

the scale relations, and we must also know the pdf (probability density function) of
c for the averaging operation.

In the limit of very large Da, this pdf is essentially composed of two peaks cor-
responding to the fresh and burnt gases:

P(c) = 60_(c) + 7f(c) + 616(1 - c) (2.11)

The constant 7 in Eq. (2.11) must to be proportional to Da -1 as demonstrated by

Bray & Moss 1977. This can be easily justified by noting that in the case of very

fast chemicM reactions (re --* 0), the instantaneous reaction rate tends to infinity

/0'(r -x tb(c)dc) while the mean reaction rate, defined by:eh

(tb) = _b(c)P(c)dc (2.12)

has to remain finite (since tb(0) = 0, tb(1) = 0). This point has a strong impact on

the order of magnitude analysis on terms where concentration gradients appear.

We now go back to the gradients of the progress variable. Mantel and Borghi

1991 proposed to relate mean gradients to the integral length scale cx It

Oc' (c,2) 1/2
and instantaneous gradients to the laminar flame thickness 6L: _ cx 3---Z-

The relations SL oc (d/rch )l/2 and _SL cx (drch )l/2 are also needed in this analysis.

As an example, we can examine the case of (Ee) itself. By definition, we have:

(Ec) = fo'dC,ic,iP(c)dc = d(d__)Da-I (d-'2) DaORe ° (2.13)
_L =-- rt

where, Ret is the Reynolds number based on the integral length scale
Ret = u'lt/v.
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Decomposing c into a mean value and a fluctuating component, /Ec} can be

developed in different terms:

IEcl = (dc,'c, ') = (d)(c,'llc'') + 2Idc',')lc"} + Idc"'c"') (2.14)

Re_'l DaO Re'_tI2Da -112 Re°Da °

and we can conclude that in the case of large Reynolds and DamkShler numbers,

only the last term of Eq. (2.14) has to be retained:

(Eo)= <dc',c',)= (2.15)

This explains why we can derive an equation for (ec} from the equation for (Ec}.

$.$.$ The averaged equation

The separation of the velocity Ut and the progress variable c into a mean value
and a fluctuation leads to a large number of correlations and new terms in the

Eq. (2.10). However, the order of magnitude analysis permits an investigation
concerning the relative importance of the terms of the equation and allows removal

of these terms which are negligible.

After a systematic study of each term in Eq. (2.10), we obtain:

0 , dOe_)_

(I) (n) Re°D, ° (nl) R,,'/'/_D_, '/2 (Iv) R_°D°°

(VI) Re_/2Da ° (VII) Re_Da ° (VIII) Re_/2Da °

02 02

- 2b_{ (1 + Oc)2 e_) - 4b-_(c,,)( (1 + 0c) 2 dc,iec)

(IX) Re°Da _ (X) Re_tl2Da t/2

0 , 02¢' 0 O2c'
- 2(b + 3)-_(c,,)(_d2c,,-O-_z2k) - (b + 3)-_<_dec-o-_x2k)

(XI) Re_tl_Da t/2

Ozk Oxk

(Kill) ReetDa t (XIV) Re_tl2Da 112

(XII) Re°tDa t

+

(XV) Re°Da _

(2.16)

O<Uk)

(V) ReODa °

Some physical interpretations are proposed for the terms appearing in Eq. (2.16).

From left to right, the following terms appear:

(I) accumulation
(II) convection
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(III) molecular diffusion

- (IV) turbulent diffusion

- (V) production (or destruction) due to expansion (or compression) of the mean
velocity field

(VI) production (or destruction) due to expansion (or compression) of the turbu-
lent flow field

(VII) production due to meari velocity gradient

- (VIII) production by stretching of the concentration field by the turbulent strain
field

- (IX) destruction

- (X) production (or destruction) due to mean concentration gradients
(XI) production (or destruction) due to local curvature effects
(XII) destruction due to local curvature effects

(XIII) destruction due to molecular dissipation
- (XIV) production (or destruction) due to chemical reactions

- (XV) production (or destruction) due to chemical reactions

_.3 First closure attempts

In this section, we present closures for some of tee terms of Eq. (2.16). Because
this study is in a preliminary phase, closure models do not exist for some terms but
are currently under investigation.

- The turbulent diffusion term (IV) is closed by relating the correlation (u_,ec) to
a turbulent diffusion coefficient dt and to the gradient of (ec):

ac Oxk (2.17)

where _rc is a Schmidt number.

The term due to expansion or compression (VI) can not be closed easily. The

sign of this correlation depends on the local velocity field. This sign could be
determined by analysis of DNS results.

- The production term due to mean velocity gradient (VII) can be modeled as in
Zeman & Lumley 1976:

, . a(vk) a<uk)
) = C'"-#<'°) k Ox, (2.1s)

where CPv = 1.0 and k represents the turbulent kinetic energy.
- The production by stretching of the concentration field due to the turbulent strain

field (VIII) can be modeled as in the ease with constant density. Because the sign
of this correlation seems to be negative (see the experimental results of Antonia

& Browne 1983), this term represents a production of (e¢). Thus, the model
proposed by Mantel & Borghi 1991 is still valid:

_ =
TI
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where a0 is a constant (a0 = 0.9).

The term -2b_((1 + 0c)2 is always negative and represents a destruction of

(ec). We propose as a first approximation:

02 02

2b_( (1 + Oc)2 e_) = RI_(1 + 0(c))2 (e¢) 2 (2.20)

where RI is a constant. Its value could be estimated from DNS results.

The production (or destruction) due to mean concentration gradients
02

4b'_(c,i)( (1 + Oc)idc'iec) can not be easily modeled. More information concerning

the correlation c,iec has to be extracted from DNS or analytical study.
_ 0 2 , 02c'

- The term -2(b + 3)p(c,i)(1--'_'_d c,i-O-_x2k)is a production (or a destruction) of

(ec). No clear closure can be proposed, and more investigation must be pursued.
_ 0 02 c'

- The term (b + 3)P(1--_cde_-O-_x2k) is a production (or destruction) of (ec) due to

local curvature effects. Following the closure proposed by Mantel &: Borghi 1991

for the curvature, we propose:

02c ' 0 (ec) 2 ,. 1/4 (2.21)(b + ) = + O(c)

0 2 C t

R2 is a constant. Its sign depends of the sign of the correlation e_Ox-----_kitself which

could be obtained using DNS results.
For the term of destruction due to molecular dissipation (XIII), the model pro-

posed by Mantel & Borghi 1991 is still valid in the case of variable density. From

these authors, we have:

2__(d20c,i Oc,i _ _n 1/2 (ec) 2 (2.22)
Oxk Oxk ) = popttet (c,2)

S0 is a constant (fl0 = 1.25).
concerning the production (or destruction) terms due to chemical reactions (XIV)

and (XV), further investigations are in progress in order to propose new closures

for these terms.

3. Conclusion and future plans

A transport equation for the dissipation of the fluctuation of a reactive scalar
has been established in the case of variable density and variable diffusivity. The

assumptions of constant pressure, no heat losses, and a Lewis number of unity

significantly simplify the equation. As in the case with constant density (Mantel Sz

Borghi 1991), an order of magnitude analysis using adequate scale relations shows
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that the effects of stretching, molecular dissipation, local curvature, and chemical

reactions are dominant. As a first approximation, some closure models are proposed,

but further theoretical developments and comparison with DNS results must be done
to confirm these models.

Analytical developments must be in the limit of large DamkShler and Reynolds

numbers in order to study the relative importance of the unclosed terms.

DNS could also give essential information on the sign of some correlations and

will allow the study the different terms of the equation separately. Existing DNS

results of flame propagation in a decaying homogeneous turbulence for different

Lewis number will be used. New computations will be performed over a large range

of the ratio u_/SL in order to assess the validity of the models and to complete the
CTR DNS database.
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The production of premixed flame

surface area in turbulent shear flow

By A. Trouv_

1. Motivation and objectives

In the flamelet theory, the modeling of the mean reaction rate is based primarily

on a statistical description of the wrinkling of the flame surface due to the turbulent

motions. The amount of wrinkling is quantified by the mean flame surface-to-

volume ratio, also called the flame surface density. The flamelet theory produces
an exact evolution equation for the flame surface density, called the E-equation,

where basic physical mechanisms such as production by hydrodynamic straining and

dissipation by propagation effects are described explicitly. In flamelet models, the

flame surface density is obtained via a modeled formulation of this exact E-equation

(Marble _ Broadwell 1977; Darabiha et al. 1987; Pope & Cheng 1988; Maistret et

al. 1989; Candel et al. 1990; Cant, Pope & Bray 1990; Borghi 1990; Mantel & Borghi

1991). Recent work at CTR, aimed at improving current models for the E-equation,
focused primarily on the production and dissipation terms due to the turbulent flow

field (Meneveau & Poinsot 1991; Trouv_ & Poinsot 1993). In these studies, the

turbulence upstreaLn- of the flame is considered isotropic and the mean flow velocity
gradient tensor, [OUi/Oxj], features only one non-zero component that corresponds

to the mean flow acceleration through the combustion zone. Flame configurations

featuring more complex mean deformation patterns, as found in practical systems

where the combustion occurs in shear layers, boundary layers, or stagnation point
flows, have not been considered yet.

There is, in fact, little knowledge on the influence of mean velocity gradients on
the dynamics of premixed flame surfaces. In current flamelet models, since the tur-

bulent flame stretch in the equation for E depends on the turbulent kinetic energy,

k, and its rate of dissipation, e, the effects of mean deformations are incorporated

implicitly through their impact on k and e. An additional term that is linearly re-
lated to [OUi/Oxj] is also sometimes introduced to account for possible direct effects

(see Duclos, Poinsot & Veynante 1993).

In the present work, we use three-dimensional Direct Numerical Simulation (DNS)
of premixed flames in turbulent shear flow to characterize the effect of a mean shear

motion on flame surface production. The shear is uniform in the unburnt gas, and

simulations are performed for different values of the mean shear rate, S. The data

base is then used to estimate and compare the different terms appearing in the

E-equation as a function of S. The analysis gives in particuAlar the relative weights
of the turbulent flow and mean flow components, a_'_and AT, of the flame surface

production term. This comparison indicates whether the dominant effects of a mean

flow velocity gradient on flame surface area are implicit and scale with the modified

turbulent flow parameters, k and e, or explicit and scale directly with the rate of
deformation.
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1.1 The evolution equation for the flame surface density

In the flamelet regime, it is convenient to describe the flame-flow interactions in

terms of the following two basic ingredients: a flame speed that characterizes the

mean combustion intensity, and a surface area that characterizes the flame wrinkling

(Williams 1985; Peters 1986; Bray 1990; Pope 1990; Poinsot, Veynante & Candel

1991). For instance, the mean reaction rate may be written as a mean integrated

chemical rate times the flame surface density:

(1)

where 0)R is the mass of fuel consumed per unit time and per unit volume; f &ndn

is the local integral of the reaction rate along the flame normal direction; E' is

the flame surface area per unit volume; E is the flame surface density, defined as

the expected value for Z', Z - (E'). Note that in (1), all quantities are local and

mean operators correspond to ensemble-averaging. While ( ) denotes a standard,

unweighted ensemble-average, ( )s denotes a surface mean, defined as an area-

weighted ensemble-average (Pope 1988), (Q)s = (QE') / (E') = (QE') /E.

In (1), the integral of the reaction rate can be replaced by the local fuel consump-

tion speed, So, defined as:

1 f &Rdn, (2)Sc - p_YR,_

where p_ and YR,_, are respectively the density and the fuel mass fraction in the

unburnt gas. The mean reaction rate may then be expressed as the surface mean

of So, called the flamelet speed, times the flame surface density:

(&a) = (p,,YR,,,(Sc)s) _. (3)

(3) is the classical flamelet expression for the ensemble mean of the reaction

rate. In this expression, the flamelet speed, (So)s, accounts for local variations of

the reaction rate along the flame surface. Recent direct simulations suggest that

for flame Lewis numbers close to unity, the departures of (ScIs from the laminar

consumption rate tend to average out when integrated across the whole turbulent

flame (Ashurst, Peters & Smooke 1987; Haworth & Poinsot 1992; Rutland & Trouv6

1993; Trouv6 & Poinsot 1993). In this situation, the flame surface density is to first

order the single key quantity that determines the mean reaction rate. Note that

Trouv_ & Poinsot (1993) also describe one flame with thermal-diffusive instability

where the effect of the turbulence on the flame surface area is coupled with a

significant increase in the mean flame intensity. In that case, both the flamelet

speed and the flame surface density need to be modeled to determine the mean

reaction rate.

In many situations, the principal effect of the turbulence is for the fluctuating

velocity field to wrinkle the flame and greatly increase its surface area. This phe-

nomenon is represented in (3) by the flame surface density, E. Following the pioneer
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work of Marble & Broadwell (1997), an exact balance equation for the flame surface

density was derived by Pope (1988) and Candel & Poinsot (1990):

OE
+ V.(:K)s_ = (_)s _, (4)

where :K is the velocity of the flame surface, given by the sum of the fluid velocity
and the flame propagation speed in the normal direction: X = u + wn; n is the unit

vector normal to the flame surface; and _ is the flame stretch. A useful expression

for _ is in terms of strain rate, flame curvature, and flame propagation speed (Candel

& Poinsot 1990):
= aT + 2wkm, (5)

where aT is the rate of strain acting in the flame tangent plane: aT = V.u--nn : Vu

(we use here standard tensorial notations: nn : Vu = ninjc3ui/Ozj); and km is the
flame surface curvature, as given by the divergence of the flame normal direction:

2kin = V.n. In (5), positive curvature is chosen convex towards the reactants.

Equation (4) can be cast in various forms. For modeling purposes, it is useful

to split the velocity vector into a mean component and a turbulent fluctuation:
u = U + u", where the tilde superscript denotes a Favre-averaged quantity: _l =

(pV)/(p). We can then re-write (4) as follows:

-_- + V._I_ + V.(u")sE + V.(wn)sE = (AT)s E + (aT)s E + 2(wkm)s _, (6)

where we use the following notations:

(AT)s = VO - (nn)s : VU, (7)

(aT)S = (V.U" -- nn : Vu")S. (8)

The three convective terms on the left-hand side of (6) are transport terms that

correspond respectively to convection by the mean flow, turbulent diffusion, and

flame propagation. The terms on the right-hand side of the equation are the source

and sink terms for the flame surface density: (AT)s is the tangential strain rate

due to the mean flow field; (aT)S is the strain rate due to the turbulent flow field;
and 2(wkm)s is a term that accounts for the combined effects of flame curvature

and flame propagation.

We are particularly interested in this study in the effect of mean flow deformations
on the dynamics of flame surface densities. As seen in the equation for E, in the

presence of mean flow velocity gradients, OUi/Oxj, the flame surface is modified in

two different ways: first by a rapid distortion that accounts for the direct straining

of the flame surface by the mean velocity gradients (this effect is represented in (6)
by (AT)s) and second by a slower modification resulting from the adjustment of the

turbulence to the applied deformations and from the corresponding variations in the

turbulent flame stretch (this effect is represented mainly by (aT)S and 2(wkmls).
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1.1_ Direct numerical simulation of turbulent premixed flames

We use DNS to analyze the different terms in the equation for the flame surface

density. The simulations are performed using a three-dimensional, compressible

Navier-Stokes solver that fully resolves the turbulent flow field. The solver uses a

high-order finite difference scheme: spatial derivatives are computed with a modified
Pad_ scheme that is sixth-order accurate (Lele 1992); solutions are advanced in

time with a third-order Runge-Kutta method (Wray 1990); boundary conditions

are specified with the NSCBC method (Poinsot & Lele 1992). We refer the reader

to Lele (1992) and Poinsot & Lele (1992) for further details concerning the system
of equations solved and the numerical methods.

Because of the otherwise prohibitive computational cost, simulations are limited

to simple but finite-rate reaction schemes. In this work, the chemistry model is a

single step, irreversible chemical reaction where the reaction rate depends exponen-

tially on temperature (Arrhenius kinetics):

_n=BpYR exp (----_) , (9)

where Ta is the activation temperature and B is a constant that is determined

according to the selected laminar flame speed. This formulation corresponds to a

binary reaction in which one of the reactants, Yn, is strongly deficient, for example,
in fuel-lean combustion. Also, it is worth emphasizing that the simulations do not

use the constant density assumption; the reaction is exothermic and heat release

effects are fully accounted for.
Following Williams (1985), we re-write the reaction rate as:

--/3(1--0) _ (10)dan = ApYnexp 1-a(1-0)]'

where O is the reduced temperature, 0 = (T-T,,)/(Tb- 7,,); Tu is the temperature
of the fresh reactants; Tb is the adiabatic flame temperature; and the coefficients

A, a, and/3 are, respectively, the reduced pre-exponential factor, the heat release
factor, and the reduced activation energy:

A = Bexp(-/3/a), a = (Tb - T,,)ITb, and /3 = aT,,ITb. (11)

The values of the flame parameters are reported in Table 1.

Another important feature of the simulations is that the transport coefficients

are temperature dependent. These coefficients satisfy the following relations:

tt = Itu(T/Tu) b , Le = ,kth/pDc v = constant, Pr = Itcv/._th = constant, (12)

where It, )_ta, and D are the molecular diffusivities of, respectively, momentum,

internal energy, and species mass; cv is the specific heat at constant pressure; b
is a constant; and Le and Pr are respectively the Lewis number and the Prandtl

number. The simulations were performed for a non-unity Lewis number, Le = 0.8.
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FIGURE 1. Numerical configuration.

Le a _ A + b Pr

0.8 0.75 8.0 456 0.76 0.75

TABLE 1. Dimensionless flame parameters, A is made non-dimensional

by the laminar flame time, A + = A (_th/pcl_)u/SL 2.

The computational configuration corresponds to a premixed flame embedded in

a three-dimensional, turbulent shear flow (see figure 1). The calculations are ini-

tialized with fresh reactants on the top side of the domain (x2 > 0) and burnt
products on the bottom (x2 < 0); the two are separated by a plane laminar flame.

The turbulence is initially isotropic, its velocity field being specified according to a
model energy spectrum:

k 4E(k) = C (V) (13)

where k is the wavenumber and C and ki are model parameters that are specified

according to, respectively, the initial turbulent rms velocity, u", and integral length
scale, 1.

At t = 0, a simple shearing motion, 0UI/Oz2 = S, is applied on the flow system.

Note that due to the flow acceleration through the flame, the shear rate does not

remmn uniform in the cross-stream x2 direction; in the flame zone, the velocity
gradient 0U1/Ox2 is a function of both time and cross-stream position. Outside the

flame zone, however, the turbulence remains homogeneous in all three directions.

In the burnt gas, the mean velocity gradient ehanges with time; it remains constant

and equal to S in the unburnt gas.

The top and bottom walls of the computational domain are inflow and outflow

boundaries while periodic boundary conditions are applied in the xl and xs direc-

tions. Non-periodic boundary conditions are needed along z2 for the following two
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reasons: to be able to maintain numerically a constant shear; to account for the

density change from unburnt to burnt gases. Note, however, that no turbulence

is generated at the inflow boundary, and the simulations are time-evolving rather

than space-evolving.
Values of the run parameters are reported in Table 2. At time t = 0, the tur-

bulence is characterized by flow length scales that are a few times larger than the

laminar flame thickness, I/If _ 4 -- 5 with IF = ()qh/pCp)u/SL, and turbulence

intensities that are higher than the laminar flame speed, u"/sL > 5. The initial
influence of the mean shear on the overall turbulence dynamics is measured by

a time scale ratio, St0, where 7"o designates the initial, turbulent eddy turn-over

time, 7-o = 1/u". All simulated cases correspond to similar values of the initial

Reynolds number. The initial turbulent Reynolds number based on the Taylor mi-

croscale, A, is approximately Rex _ 25. The initial turbulent Reynolds number

based on the integral length scale is Ret _ 35. In Table 2, a DamkShler number

is also introduced using the Kolmogorov time scale and the laminar flame time:

Da = ( A/u")/(If /sL ) = V/"_(rlk/Vk )/(If /sL ), where _?k and vk are respectively the

Kolmogorov length and velocity scales. While the simulated flames correspond to

relatively low DamkShler numbers, Da < 1, the reaction zone can still be described
as a surface and the simulated flames occur in the flamelet regime.

Since in the presence of mean shear the turbulent structures are elongated in the

streamwise direction, we use a computational domain that is twice as long in the

streamwise direction compared to the cross-stream and spanwise directions. The

grid spacing is uniform in all three directions; the grid resolution is 129 x 129 x 65

and is, therefore, twice better in the direction of mean flame propagation, x2. Also,

given the growth of the turbulent length scales in the streamwise direction, the

numerical simulations are all limited to relatively low total shears, St < 15, after

which the eddies have sizes that are comparable to the computational domain and

the numerical simulations suffer from insufficient resolution.

Run designation Sro Ret Rex SlF/SL u"/SL l/IF Da Le

Case 1 (lew08tSR) 10.5 35. 25. 10. 5.0 5.3 0.8 0.8

Case 2 (lew08SR) 7.0 35. 25. 6.7 5.0 5.3 0.8 0.8

Case 3 (lew08sSR) 3.5 35. 25. 3.3 5.0 5.3 0.8 0.8

Case 4 (lew08wSR) 3.3 38. 28. 6.7 7.5 3.8 0.4 0.8

Case 5 (lew08uSR) 1.7 38. 28. 3.3 7.5 3.8 0.4 0.8

Case 6 (lew08vSR) 0.7 38. 28. 1.3 7.5 3.8 0.4 0.8

TABLE 2. Dimensionless parameters for the reacting flow simulations.

All parameters correspond to the initial condition, t = 0.

All terms in (6) can be obtained from the simulations. We refer the reader

to Trouv_ (1993) and Trouv_ & Poinsot (1993) for further details concerning the

diagnostics that were developed to extract the relevant information from the DNS
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FIGURE 2. The effect of the turbulence-to-mean shear time scale ratio, St0, on

the relative increase of total turbulent kinetic energy. A comparison between cases
2 and 6.

database. We simply briefly recall here that flame-based quantities are defined

by making the assumption that the resolved finite-thickness reaction zone can be

viewed as a constant progress variable surface, c = c! = 0.8 where c -- 1--(YR/YR,u).
Ensemble-averaging is conveniently performed in the homogeneous xl - xa planes.

For completion, we recall the expressions used to calculate the flame propagation

speed, the flame surface density, and the surface means:

1 Dc 1
w = )[.n - u.n = - (&n - V (pDVYR)), (14)

[Vc] Dt p ]VYR]

1

- Lz, Lx3[=c,Jc IVcl dr, (15)

where Lxt and Lz3 are the xl and xa dimensions of the computational domain.

_ V_-_-,_ + (-_-:,)_)
(Q)s - (QS') fc_o,(QlVcl all� /_ ao_2 _a__2) (16)

(S') f_=_, (IWl dl/ _/(-_, )_+, 0,3,

2. Accomplishments

The simulations describe the wrinkling of the flame zone by the flow as well

as the transition of the flow field from isotropic decaying to anisotopic sheared
turbulence. The mean shear rate, S, is used as a control parameter to modify the

coupling between the mean flow, the turbulence, and the flame. Since the wrinkling

of the flame is mainly driven by the turbulent motions in the unburnt gas, we first

describe in §2.1 the mean shear-turbulence interactions that modify the turbulence
upstream of the flame. We then turn in §2.2 to the impact of these modifications

on the evolution of flame surface densities with emphasis on the effect of S on the

flame surface production term.
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2.I The effect of mean shear in homogeneous turbulent shear flow

Turbulent shear flows present several additional levels of complication compared

to isotropic turbulence because of the anisotropy of the flow, the production of

turbulent kinetic energy by the mean strain, the possible amplification of hydro-

dynamic (Kelvin-Helmholtz) instabilities, and the resulting presence of large scale

coherent structures. The general complexity of sheared turbulence is significantly

reduced in the case of homogeneous shear flows, where the mean shear is uniform

throughout the flow. For instance, such basic flow configurations are free of large

scale hydrodynamic instabilities. In addition, homogeneous turbulent flows allow

much simplified and more powerful statistical descriptions. Due to this increase in

simplicity, homogeneous shear flows have been extensively studied in the literature,

experimentally (Tavoularis & Corrsin 1981; Rohr et al. 1988; Tavoularis & Karnik

1989), as well as numerically (Rogallo 1981; Rogers & Moin 1987; Lee, Kim & Moin

1990; Holt, Koseff & Ferziger 1992).

We are particularly interested in this work in the effect of changing the mean shear

rate, S, on the energy levels and the structure of the turbulence. To characterize the

effect of S, we performed a preliminary series of six simulations without flame. The

run parameters are identical to the ones given in Table 2, except for the absence of

chemical reaction. The grid resolution is 129 x 65 × 65. The results are used in the

subsequent simulations with flame to describe the dynamics of the turbulence in the

unburnt gas. We present in this section the main results from these non-reacting

flow simulations.

The evolution of initially isotropic turbulence in a mean flow of uniform sim-

ple shearing motion, S = dUl/dx2 = constant, can be described in terms of the

following three dimensionless parameters: the total shear, St, that gives a non-

dimensional time; the time scale ratio St0; and a turbulent Reynolds number,

Ret = u"l/u, taken at t = 0. St0 is a measure of the initial importance of the

applied shear. Ret determines the impact of viscous effects. Both paramcters serve
to describe the effect of initial conditions, and their influence will be negligible at

large times.

The present simulations, however, are limited to total shears of approximately

10. At time St = 10, the turbulent eddies remains in non-equilibrium. For instance,

the quantity Sk/e is still evolving. It is generally believed that uniformly sheared

turbulence will ultimately achieve a self-preserving state in which the turbulence

changes at a rate independent of the initial conditions. In the simulations, the

turbulence is clearly still far from this equilibrium state.

For small values of the total shear St, the simulations reveal a range of flow

regimes ranging from viscous decay for small values of Svo, to rapid distortion for

St0 > 5. This diversity in the turbulent flow response to the mean shear is shown in

figure 2. While for $7"0 = 0.7 the flow goes through an initial phase characteristic of

decaying grid turbulence and energy growth is only observed at later times, St0 > 3,

for St0 = 7, the flow is dominated by the mean shear-turbulence interactions and

the energy growth starts immediately at t = 0.

Figures 3 and 4 describe the partition of turbulent kinetic energy between the
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FIGURE 3(A). Partition of the turbulent kinetic energy, k; Kij =- u i uj/2k,

Q12 = K12/_--_llK22. Case 6, Sro = 0.7.
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FIGURE 3(B). Partition of the turbulent kinetic energy, k; ki - u i u i/2 = I'k'ii X k.
Case 6, St0 = 0.7.

streamwise, cross-stream, and spanwise velocity fluctuations. As seen in figures 3(a)

and 4(a), the simulations feature an initial transient phase, 0 < St < 6, where the

anisotropy levels, Kij = u_'u_/2k, change rapidly, followed by a phase of slower

adjustment where the flow approaches structural equilibrium with Kij asymptoting

to constant values. Note that the flow remains more isotropic in case 6 compared to

case 2. This result is consistent with the findings by Lee, Kim & Moin (1990), who

show that the structure of shear-driven homogeneous turbulence changes drastically

when the mean shear rate, S, is increased and that the degree of anisotropy of the
flow increases with S.

Figures 3(b) and 4(b) compare the magnitudes of the different turbulent kinetic
. It. II I.'_

energy components, ki - u i u i/,_ = Kii × k. The initial decay phase is very pro-

nounced in case 6: in figure 3(b), the different turbulent intensities remain lower

than their initial value up to St = 8. The situation is drastically different at high
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FIGURE 4(A). Partition of the turbulent kinetic energy, k; Kij - u iuj/2k,

Q12 --- K12/_. Case 2, Sro = 7.
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II It I_)FIGURE 4(B). Partition of the turbulent kinetic energy, k; ki - u i u i/- : Ix'ii x k.

Case 2, Sro = 7.

shear rates: in figure 4(b), at St = 8, the streamwise component k: is already an or-

der of magnitude larger than its initial value. Furthermore, the simulations feature

the following classical arrangement: kl > k3 > k2. The first inequality reflects the
fact that the streamwlse component receives energy directly from the mean shear,

while the other components are maintained by redistribution of energy through the

pressure-strain correlation.

We also present in figure 4(b) a comparison between the DNS data and the pre-
dictions from Rapid Distortion Theory (RDT) (see for example Townsend 1976;

Maxey 1982). RDT is a linear theory that applies to situations in which the mean
shear-turbulence interactions dominate the nonlinear turbulence-turbulence inter-

actions. Its domain of validity corresponds to St0 >> 1. RDT sheds light on the

mechanisms of energy exchange between the different turbulent velocity compo-
nents. For instance, RDT shows that while most of the energy is concentrated in

the streamwise component, k], energy is also transferred from both k] and k2 to k3
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by the pressure-strain correlation, which accounts for the net reduction (increase)

in ks (k3) by the shear distortion seen in figure 4(b).

Hence, while the initial time evolutions of ka and k3 depend strongly on the
parameter St0, the cross-stream turbulent velocities are less sensitive to its value:

for Sro < 1, k2 decreases at small times because of viscous decay; for St0 >> 1, k2

also decreases because of a net energy loss to k3.

2._ The evolution of flame surface area in sheared turbulence

It is well known that in the presence of mean shear, the turbulent rates of mixing

and chemical reaction tend to be increased. One reason for this increase is the devel-

opment of large scale coherent structures that are amplified by the Kelvin-Helmholtz

hydrodynamic instability. This pseudo-laminar mechanism has been extensively

studied in the last twenty years, including in premixed and nonpremixed combus-

tion systems. In homogeneous turbulent shear layers, the hydrodynamic instability

does not occur, and the enhancement of mixing and chemical reaction results from

increased straining and increased turbulent transport due to shear-production of
turbulent kinetic energy. This turbulent mechanism has been studied in a number

of recent numerical studies in the context of mixing problems (Rogers, Mansour &

Reynolds 1989; Holt, Koseff & Ferziger 1992) and nonpremixed chemical reactions

(Leonard & Hill 1992; Nomura & Elghobashi 1992). Nomura & Elghobashi assume
in their study an infinitely fast reaction, while Leonard & Hill consider a finite-rate

reaction both with temperature-independent and temperature-dependent kinetics.

Both studies are limited by the constant density assumption. In these studies, the

enhancement of chemical reaction due to the mean shear is explained by the in-

creased turbulent strain rates and increased reactant concentration gradients found

along the flame surface. Since in the absence of quenching, higher concentration

gradients are equivalent to higher reaction rates, it is suggested that one basic effect

of mean shear is to increase the mean flame intensity. This effect is related in (3) to
modifications of the flamelet speed, (Sc}s, not to modifications of the flame surface
density, _.

In premixed flames, however, the departures of (,..¢c}s from the laminar consump-

tion rate tend to average out when integrated across the whole turbulent flame, and

in many situations the mean combustion intensity is only weakly sensitive to the tur-

bulence. Therefore, the argument that relates the increased combustion efficiency

observed in nonpremixed flames with shear to a change in the flame structure is not

expected to apply to premixed configurations. In that case, the effect of mean shear

must be related to a modification of the total flame surface area. In the following,

we use DNS to get basic information on the dynamics of flame surface densities

as a function of the mean shear rate, S. The mean shear rate, S, is varied in the

proportion of 1 to 10, as seen in Table 2. Large values of the shear rate (as in

cases 1, 2, and 4) are relevant to a flame propagating in the near-wall region of a

turbulent channel flow. Lower values (as in case 6) can be found in flames stabilized
in subsonic shear layers.
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FIGURE 5(A). The effect of the turbulence-to-mean shear time scale ratio, St0,
on the relative increase of total flame surface area, (Sv)/L,,L,s. A comparison

between cases 4, 5, and 6. Time is made non-dimensional by the initial, turbulent

eddy turn-over time, r0.
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FIGURE 5(B). The effect of the turbulence-to-mean shear time scale ratio, Sv0,
on the relative increase of total flame surface area, (Sv,)/Lx_L_a. A comparison

between cases 4, 5, and 6. Time is made non-dimensional by the mean shear rate,

S.

_._.I The total flame surface area

As described in §1.2, six different cases have been simulated that correspond to
turbulent flames characterized by the same laminar flame thickness, IF, the same

laminar flame speed, SL, embedded in two different initial turbulent flow fields (in

this respect cases 4, 5, and 6 differ from cases 1, 2, and 3), and with different values

of the mean shear rate, S.
The effect of changing the shear rate on the production of flame surface area,

(Sv), is shown in figure 5 for cases 4, 5, and 6. In figure 5(a), (Sv) is plotted
versus time, with time made non dimensional by r0. Cases 4 and 5 feature an

initial phase of slow growth followed by a phase of more rapid growth. In case 6,
the transition to this second phase is not observed. These two successive phases are
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more clearly seen when (Sv) is plotted as a function of total shear, St (figure 5(b)).
For 0 < St < 10, the production of flame surface area is slow and the differences

between all simulated cases remain moderate. In contrast, for St > 10, the flame

surface is rapidly growing at a rate that does not seem to depend on S. In case 6,

the simulation is stopped at St ,._ 8.5, before the transition to the second phase is
completed.

One important result in figure 5(b) is that the flame response to the applied shear
scales like the turbulent flow field (§2.1) with the total shear, St.

2.2._ The production and dissipation of flame surface area

Using the diagnostics presented in §1.2, we now turn to the analysis of the source

and sink terms of flame surface area as they appear on the right-hand-side of equa-

tion (6). These terms can be resolved spatially across the turbulent flame (Trouv_

1993; Trouv_ &_ Poinsot 1993). In the following, they are space-averaged in the

cross-stream direction, and we limit our discussion to time variations of global
flame properties. We estimate the global value of any quantity Q using the follow-
ing T-weighted space-averaging scheme:

O(t)-( f (O)s(z_,t)_(x_,t)dz2)ftf _(x2,t)dx2). (17)

Using(17), we define the total production of flame surface by hydrodynamic stain-

ing, P, the total dissipation by flame propagation effects,/_, and the resulting net
total flame stretch, _ as follows:

/9(t) -=AT + _TT, (lS)

D(t) =_2wk"-"_, (19)

_(t) - P + 5. (20)

Also, the total flame surface area, (Sv), is equal to the volume-integral of the
flame surface density:

(sv)(t)
- / _(x2,t)d=,, (21)

and, using (4), _ can be directly related to the instantaneous rate of change of the
total flame surface area in the computational domain:

dlSv) ,
_(t) = --Zi--/(S.,. (22)

A A

Figure 6 shows P, D, and _ as a function of total shear for cases 4, 5, and 6. It

is seen that while the simulated cases exhibit large differences in the time history

of the production term, J_, these differences tend to be balanced by corresponding
variations in the dissipation term, 5, and the net total flame stretch, _, follows

approximately the same time evolution for all cases. In other words, the total
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FIGURE 6. Time evolution of flame surface production, ,v, flame surface dissipa-

tion, D, and total flame stretch, _. A comparison between cases 4, 5, and 6. P, D,
are made non-dimensional by the laminar flame time, ()_th/pcp)u/SL 2.
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FIGURE 7. _TT/A"_TvS St. Relative weights of _T and A_'T in their contributions to

flame surface production, j3. A comparison between cases 4, 5, and 6.

flame stretch scales with the total shear, St, but does not depend on the parameter

Sro. It is worth emphasizing that this result is somewhat unexpected given the

large impact of St0 on the turbulence dynamics as described in §2.1. One quantity,
however, that remains approximately the same from one simulation to the other is
the cross-stream turbulent rms velocity, as measured by k2. It is believed that the

insensitivity of the total flame stretch to changes in St0 is a strong indication that

scales with k2 rather than k.
Furthermore, since _ appears to be a function of St and not of St0, (22) can be

re-written as:

('f' )<Sv>(St) = (Sv)(t =0) exp _,-SJo "_(T) dT . (23)

(23) shows that at constant total shear, St = constant, the flame surface area is a
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cases 1 to 6. ATe2 is made non-dimensional by the mean shear rate S.

decreasing function of S, as was found in figure 5(b).

As seen in (18), the mean tangential strain rate at the flame can be decomposed

into two components: AT represents the contribution of the mean rate of deforma-

tion; and a"_ represents the effects of the turbulent flow velocity gradients. Figure

7 presents the ratio _TT/AT versus non-dimensional time for cases 4, 5, and 6. At

t....= 0, the flame is plane and there is no strain rate due to the mean flow field,

AT = O. As the.....flame gets wrinkled, the effect of the mean flow field gets more

pronounced and AT and _T take comparable values. For St > 5, however, both the

absolute value of _TT and its relative weight in the expression for/3 are increasing.

These results indicate that a transition to a fully turbulent regime is occurring:

for St > 5, the turbulence levels, kl, ka, and also k2 are all increasing; the hy-

drodynamic straining at the flame, as measured by/3, takes higher values; in the

expression for P, a"_ is increasing faster than AT and the turbulent flow component

of flame production is becoming dominant.
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We now take a closer look at the strain rate due to the mean flow field. (AT)s

is a production term that depends on the mean cross-stream velocity gradient and
the flamelets orientation:

OV2 OVl
(AT)s = (1 - (n22)s) _ - (nln2)s-_z 2 , (24)

where ni is the xi-component of the time normal vector. The first term in (24)
accounts for the flow acceleration through the time; the second term describes

the rapid distortion of the tiame surface due to the applied shear. Both terms
remain positive across the turbulent time. Note that since in (24) the velocity

gradients are multiplied by quantities that are direct measures of the turbulent
time wrinkling, the magnitude and relative weights of the two components of (AT)s
are difficult to assess a priori. In the simulations, the statistics describing the
flmelet's orientation do not vary significantly across the turbulent brush; (n22)s

and (nln2)s are functions of time but nearly independent of x2 position. Therefore,
space-averaging across the turbulent time yields the following approximation:

A ou, (25)AT =---AT22 + AT1: _ a_ +/3 ,
Oz: Oz2

where a and/3 are constant coefficients.

Figure 8(a) presents the time variations of -nln_ which can be considered as an
estimate of/3. All simulated cases follow the same time evolution when scaled in

terms of St: growth from the initial zero value; saturation at St _ 5; short period

of decrease; and rapid growth for St > 8. The magnitude of -n'_fi'2 is a strong

decreasing function of S. This result may be explained as follows. -nine--2 is de-

termined by two simultaneous effects, a mean deformation effect and a turbulent
diffusion effect. Let us consider, for instance, a sinusoidal flame surface of constant

amplitude subjected at t = 0 to a simple shearing motion: -nine2 first increases,
saturates at a time that scales with St, and then decreases as the flame elements

are turned away from the direction of maximum positive strain rate (inclined at

45 degrees from the mean flow direction) by the rotation component of the applied
shear. In the simulations, this mean deformation effect is coupled with an increase

of the turbulent time thickness due to turbulent diffusion that is constantly coun-

teracting the flattening of the flame due to the mean rotation. The characteristic
time scale of the mean deformation effect is 1/S. The characteristic time scale of
the turbulent diffusion effect is a turbulent time scale that is likely to scale with

1/v_2. The largest magnitude for -nln'_-2 is obtained for cases where the turbulence
dominates the mean deformation, that is for small values of S.

Hence, in (25) the increase of OU1/Ox_ with S is cancelled by a corresponding
decrease of the coefficient/3. Figure 8(b) illustrates this result and shows that the

resulting strain rate is more than one order of magnitude smaller than S. Also,

in all cases, a is always 5 to 10 times larger than/3 and both terms in (25) have

comparable contributions to AT.
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3. Conclusion

Direct simulations of premixed flames in turbulent shear flow are used in this

study to examine the effect of a mean shear motion on the flame surface dynamics.

The shear is uniform in the unburnt gas, and simulations are performed for different

values of the mean shear rate, S. A detailed analysis of the rate of change of flame

surface densities is performed, based on the exact Z-equation. In particular, the

time evolution of the total flame stretch, 5, is compared for different values of S.

In the expression for the total flame stretch, the production termby hydrodynamic

straining is decomposed into two components: a component, AT, that depends

explicitly on the mean rate of deformation; and a component, _T, that is determined

by the turbulent flow field.

The data show that while _ scales with the total shear, St, it does not depend

on the turbulence-to-mean shear time scale ratio, St0. This is a surprising result

since the turbulence is strongly influenced by this parameter. This result implies

that the principal effect of changing the mean shear rate, S, is to re-scale the time

evolution of flame stretch. For instance, the results show that for 0 < St < 10, the

rate of change of flame surface area is small; in contrast, for St > 10, a transition

to a phase of rapid growth is observed. The main effect of S is then to make that

transition occur faster. Note also that, while flame stretch scales with St, since

the total flame surface area, (Sv), is related to the time integral of stretch, (Sv) is
found to scale both with St and S.

The relative insensitivity of _ to changes in SAt0 was further studied by examining
the direct contribution of the applied shear to AT. This contribution is always small

in the simulations. It is shown to scale with the product of the magnitude of the

mean velocity gradient and a coefficient that depends on the flame wrinkling. The

magnitude of that coefficient is determined by competing effects: a positive turbu-

lent effect and an initially positive and subsequently negative effect controlled by

the mean rotation component of the applied shear. It is argued that this coefficient

scales with the inverse of a characteristic turbulent time divided by S so that at

high shear rates, the increased mean velocity, gradient is multiplied by a decreased
coefficient and there is no net variation of AT.

Finally, the question of which term in the E-equation is responsible for the tran-

sition to rapid growth of flame surface area, at St > 10, is studied by comparing a"_

and AT. Results show that aT is increasingly dominant in the expression for flame

stretch; the main_, effect of the applied shear is to increase the turbulent straining

motions, and AT may be neglected in the models.
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On streak spacing in wall-bounded turbulent flows

By J. M. Hamilton and J. Kim

1. Motivation and objectives

In the 1992 CTR Annual Research Briefs, Hamilton, Kim _z Waleffe (1993a) pre-
sented the results of a study of the regeneration mechanisms of near-wall turbulence

structures. One of the primary motivations of this study was the observation that

the low- and high-speed streaks in the near-wall region have a characteristic span-

wise "wavelength" of about 100 u/ur (ur = _ is the friction velocity and _'w

is the shear stress at the wall). This value of 100 wall units has been reported by

numerous investigators in a wide range of flows, but many attempts to develop a
theory of streak spacing have been unsuccessful.

Waleffe, Kim &: Hamilton (1993) examined direct resonance (Jang, Benney _z

Gran, 1986) and selective amplification, two of the linear mechanisms that have

been proposed to explain the characteristic streak spacing, and found that these

theories fail in several respects. Jim6nez and Moin (1991) addressed the issue of

streak spacing with a series of direct numerical simulations of a plane Poiseuille

flow at moderate Reynolds number, but of very limited streamwise and spanwise

extent. They found that turbulence was not sustained in computational domains

narrower than about 100 u/u_. In light of this result and the failings of linear

theory, Waleffe et al. conjectured that the streak spacing depends on the entire
process of regeneration of near-wall structures.

The present study is a continuation of the examination by Hamilton el al. (1993a)

of the regeneration mechanisms of near-wall turbulence and an attempt to investi-

gate the conjecture of Waleffe et al. The basis of this study is an extension of the

"minimal channel" approach of Jim_nez and Moin that emphasizes the near-wall

region and reduces the complexity of the turbulent flow by considering a plane Cou-

ette flow of near minimum Reynolds number and streamwise and spanwise extent.

Reduction of the flow Reynolds number to the minimum value which will allow

turbulence to be sustained has the effect of reducing the ratio of the largest scales

to the smallest scales or, equivalently, of causing the near-wall region to fill more of

the area between the channel walls. A plane Couette flow was chosen for study since

this type of flow has a mean shear of a single sign, and at low Reynolds numbers,
the two wall regions are found to share a single set of structures.

Hamilton et al. (1993a,b) found that the near-wall structures are regenerated

quasi-cyclically and that this regeneration process can be broken down into three

stages: streak formation, through a simple process of advection by streamwise vor-

tices; streak breakdown as a result of an instability mechanism; and vortex regen-

eration, the result of nonlinear interactions among the modes produced by streak

breakdown. This last step is necessary to complete the cycle since the streamwise

vortices would otherwise decay through viscous diffusion.
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To examine the conjecture by Waleffe et al. (1993) that it is the entire regenera-

tion process that determines tile spanwise spacing of streaks, the methods developed
to study the regeneration cycle can be applied to flows in which the spanwise di-
mension of the computational domain has been reduced below the value required

to sustain turbulence. The results of this approach are discussed in the remainder

of this report.

2. Accomplishments

ILl Numerical method and flow geometry

The direct numerical simulation results presented here were obtained using the

pseudo-spectral channel flow code of Kim, Moin & Moser (1987) modified to simu-
late plane Couette flow and using a third-order Runge-Kutta time advancement for
the convective terms rather than the original Adams-Bashforth. Dealiased Fourier

expansions are used in the streamwise (x) and spanwise (z) directions, and Cheby-
chev polynomials are used in the wall-normal (y) direction. Boundary conditions

are periodic in x and z, and the no-slip condition is imposed at the walls. The
mean streamwise pressure gradient is zero, and the flow is driven by the motion of
the walls. The flow velocities in the x, y, and z directions are u,v, and w, respec-

tively. The Fourier transforms of the velocities are "hatted" and are functions of
the streamwise wavenumber, kx, the spanwise wavenumber, kz, and the untrans-

formed y-coordinate, e.g. _(kx,y, kz). The fundamental streamwise and spanwise
wavenumbers are a =- 27r / Lx and/3 =- 2_r / L_. Quantities are nondimensionalized

by outer variables: half the wall separation, h, and the wall velocity, Uw. In some
cases, a plus superscript is used to denote quantities nondimensionalized by wall
variables: kinematic viscosity, v, and friction velocity, ur = V/r'_. The flow

Reynolds number is based on outer variables: Re= Uw h/_. The computational grid
is 16 × 33 × 16 in x, y, and z. The resolution in wall units for all cases presented
here is better than Ax + = 13.1, Az + = 9.0, and Ay+ = .19 near the wall, and 3.8

at the center of the channel.

_.,_ Dynamics of regeneration cycle

Since periodic solutions are obtained in these simulations, Fourier decomposition
is a natural tool with which to examine the details of the flow. The size of the

computational domain is such that the low- and high-speed streaks extend the full
length of the flow in the streamwise (z-) direction, and a single pair of streaks fill
the domain in the spanwise (z-) direction. In Fourier space, this means that the
dominant mode for the streaks is the (kx = 0, kz = /3) (or k, = -/3) mode. The

modal RMS velocity (the square root of the "kinetic energy") is given by

½

M(ma, n/3) -- { fl_l [fi2(ma,y,n/3) + _(ma, y,n/3) + tb2(m_,y'n/3)] dY} ' (1)

and M(0,/3) is a useful quantity for studying the time evolution of the streaks.
For the first flow considered here, L_ = 1.75rr, L: = 1.27r (L + = 116.9-143.6),

and Re=400. The upper curve in Figure 1 is a plot of M(0,/3) for this flow. The
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FIGURE 1. Regeneration process over many cycles. _ , M(0,8); --

0[&_(0, y, _)[2/0t, due to nonlinear terms only, integrated in y.

quasi-cyclic nature of the turbulence in this domain is evident in this figure, and

the maxima in M(0,/_) correspond to well-defined, nearly x-independent streaks,

while the minima correspond to "wavy", poorly-defined, x-dependent streaks. The

cycle can be broken down into two parts: streak formation where dM(O, _)/dt > O,

and streak breakdown, where dM(O, fl)/dt < O.

Streak formation has been found to be the result of a simple process of advection

of streamwise momentum by the x-independent vortices, and streak breakdown is

the result of an instability of the streaks (Hamilton et al. 1993a,b). It can be shown

that the x-independent vortices responsible for streak formation will decay in the

absence of any interactions among the x-dependent modes; it i.e. x-independent

vortices cannot extract energy directly from the mean flow, fi(0, y, 0). Therefore,
some form of vortex regeneration mechanism must function in order for turbulence
to be sustained.

This regeneration mechanism is found to be a rather complicated set of non-

linear interactions of the k_ = a modes (Hamilton et al. 1993a,b) that produce

x-independent streamwise vorticity, _bz(0, y, n_). The time evolution of vortex re-

generation is most easily seen by considering the quantity

x Ot (2)

(where the t superscript represents the complex conjugate), since this quantity is

positive at y-locations where the existing streamwise vorticity is being augmented
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FIGURE 2. Circulationofkz = 0 modes overmany regenerationcycles.Circulation
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and negativewhere the vorticityisbeing reduced. Only the contributionof the
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viscosityactsonly to diffusekz = 0 mode vorticity.

The lower curve in Figure 1 is a plot of 0l&z(0 , y, fl)12/0t, integrated in y. Vortex

regeneration occurs during streak breakdown, with peak amplitudes ranging from
about 0.008 to nearly 0.02, except during the cycles at t m 1000 and t ,_ 1300. These

cycles produce almost no regeneration of the streamwise vortices. One measure of

the strength of the streamwise vortices is the circulation of the kx = 0 modes

rk.=o -- / (wx)k,=o dA, (2)

and this quantity is plotted in Figure 2. Circulation was calculated for all possi-

ble rectangular contours of integration conforming to the computational grid, and

the maximum values at each time, t, are plotted. Experiments by Hamilton _z

Abernathy (1993) showed that, in a laminar flow, streamwise vortices must have a
circulation above some threshold in order to cause transition to turbulence. Anal-

ogously, near-wall streamwise vortices in a turbulent flow would be expected to
require a threshold value of circulation in order to produce unstable streaks. If this

is the case, regeneration of the vortices need not occur every cycle as long as vortex

circulation does not decay below the threshold before subsequent cycles.

Fk.=0 typically reaches a maximum value during streak breakdown and decays as

the streak forms, reaching a minimum value at about the same time that M(0,/3)
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peaks. Thus, the form of the streaks at the peak in M(0,/3) is most closely tied to the

minimum value of rk. =0 each cycle; the maximum value is relatively unimportant.

Hamilton K: Abernathy (1993) found that the threshold value of the circulation,

using the present nondimensionalization, is about 0.15 in a steady flow. This is

consistent with Figure 2 since the minimum circulations never fall much below that

value, even during the two cycles which have no regeneration of the vortices.

2.3 Spanwise spacing of structures

Some of the dynamics of the regeneration process have been discussed in the

previous section, and this section will focus on the question of the spanwise spacing

of the streaks. To do this, the width of the computational domain is reduced so

that turbulence is not sustained. It can then be established whether a single step

in the regeneration process is disrupted by the constraint of the reduced spanwise

dimension, or whether, as Waleffe, et al. (1993) conjectured, the entire process is
affected. Two flows with unsustained turbulence are considered.

The modal decomposition of the first flow is plotted in the upper half of Figure 3.

It is not evident in this figure, but M(0,/3) decays monotonically after t = 1000,

and the flow eventually becomes laminar. The spanwise dimension of the flow is

Lz = 1.17r, or L + = 109.2 to 126.1 (where L + is based on uT during the early part

of the simulation before the turbulence begins to decay). The streamwise dimension

is Lx = 1.67r, and the same Reynolds number, 400, is used. This flow was obtained

by first reducing the spanwise dimension of a sustainable turbulent flow, and then

reducing the streamwise dimension so as to get a well defined regeneration cycle

before the turbulence decays. The simulation begins at t = 0, but only the last few
cycles are shown.

The quasi-cyclic behavior of the streaks in the unsustained turbulent flow of

Figure 3 appears similar to that of the sustained flow (Figure 1) until the final

peak in M(0,/3). There is no breakdown of the flow after this peak, and without
breakdown, the regeneration cycle is broken. It is found that breakdown does not

occur because the streaks are too stable; i.e. the growth rates of small disturbances

are very small or negative near the peak in M(0,/3) (cf. Hamilton ef al, 1993a).
In sustained turbulent flow, the streaks are the result of advection of momentum

by streamwise vortices. Whatever changes occur in the streaks to increase their

stability in the unsustained turbulent flow are likely then to be traceable to changes
in the streamwise vortices. The regeneration of the streamwise vortices for the last

few cycles of the unsustained turbulent flow is shown by the plot of 0]_bz(0,/3)12/0t
integrated in y in the lower half of Figure 3 (heavy solid line). Note that the first two

vortex regeneration events in the plot peak during streak breakdown, while the final

event does not peak until the new streaks have already begun to form. Thus, even

though the peak amplitude of the vortex regeneration process is nearly constant

for each of the three regeneration events plotted, the final regeneration occurs late

relative to the beginning of streak formation. The circulation of the vortices is

plotted in Figure 4, and it can be seen that the streamwise vortices continue to

decay during this delay, with the circulation falling to about 0.11 before regeneration

begins. This value is lower than any observed during the sustained cycle of Figure 2.
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FIGURE 3. Regeneration process over last few cycles of unsustained flow.
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FIGURE 4. Circulation of kz = 0 modes over last few cycles of flow of Figure 3.
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FIGURE 5. M(0, fl) for: _, unsustained turbulent flow of Figure 3; ....

same flow with _, tb(0, y, nil) (n _ 0) modes multiplied by 2.0 at t = 858.5 (denoted
by heavy vertical line).

After regeneration finally takes place, the circulation drops to about 0.09 at the final

maximum in M(0,/3), and there is no subsequent breakdown. To verify that the

relative delay in vortex regeneration does indeed cause the turbulence to decay, the

strength of the streamwise vortices was artificially boosted at t = 858.5, a time

corresponding to mid-breakdown in the final full regeneration cycle of Figure 3.
The result is plotted in Figure 5. The strength of the vortices was increased by

multiplying the _3(0, y, n/3) and tb(0, y, n/3) (n _ 0) modes by a factor of 2.0, and

all other modes were left unmodified. The effect of increasing the vortex strength
is immediate, and the flow returns to the normal regeneration cycle. Note that the

turbulence does not subsequently decay; the domain size is such that turbulence is

marginally sustainable and can go through a large number of cycles before decaying.

A second case of unsustained turbulence (L + = 97.0-86.5) is presented in Fig-
ure 6. The solid line in the upper half of the plot is M(0, fl), and the associated

vortex regeneration, 0[&,(0,/3)I/Or, is shown in the lower half. In this flow, vortex
regeneration takes place at about the same point in the cycle as in the sustained

cases, and the circulation, plotted in Figure 7, is increased appropriately. Thus,
there is no delay in regeneration as in the previous flow. Indeed, the opposite is

true, and vortex regeneration takes place too early; at the time of the final peak
in M(0,/3) in Figure 6, Fk,=0 has dropped to about 0.1. To verify this assertion,
Fk,=0 was increased by a factor of 1.5 at t = 130.0 (the peak in circulation in

Figure 7), and M(0,/3) of the resulting flow is plotted as a dashed line in Figure 6.
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The increase in circulation produces unstable streaks followed by breakdown and a

return to a (rather chaotic) regeneration cycle. Since streak formation takes place

during the decay of the vortex, the increase in circulation at the peak in Fk,=0

increases circulation by a like amount at subsequent times and simulates a delay

in regeneration. There are several ways to think about the effects of reducing the
computational domain size below that required for sustained turbulence, but these

results suggest that the most useful may be to think of the small domain as causing
the flow to develop a very critical dependence on the timing of each process in the

regeneration cycle. As the domain becomes smaller, the flow becomes unable to

accommodate the variations in the intervals between events that naturally accom-

pany turbulent flow. In the two cases of unsustained turbulence presented here,

the regeneration of streamwise vortices occurred with full vigor, but at the wrong
times. Turbulence can be sustained only when streak formation, streak breakdown,
and vortex regeneration occur at the appropriate intervals.

The results of this section support the conjecture by Waleffe et al. (1993) that
the minimum spanwise wavelength is set by the entire regeneration process, rather
than any individual element of regeneration. When the computational domain is

too narrow, turbulence decays because breakdown does not occur. Breakdown, in
turn, depends on the creation of unstable streaks by sufficiently strong streamwise

vortices. The strength of the streamwise vortices depends on vortex regeneration,
and this, of course, returns us to the starting point, since regeneration depends on
streak breakdown during the previous cycle.
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Numerical simulation of n o4_"

Newtonian free shear flows

By G. M. Homsy I AND J. Azaiez 1

1. Motivation and objectives

Free shear flows, like those of mixing layers, are encountered in aerodynamics, in

the atmosphere, and in the ocean as well as in many industrial applications such

as flow reactors or combustion chambers. It is, therefore, crucial to understand the

mechanisms governing the process of transition to turbulence in order to predict
and control the evolution of the flow. Delaying transition to turbulence as far

downstream as possible allows a gain in energy expenditure while accelerating the

transition can be of interest in processes where high mixing is desired. Various

methods, including the use of polymer additives, can be effective in controlling fluid
flOWS.

The drag reduction obtained by the addition of small amounts of high polymers

has been an active area of research for the last three decades. It is now widely

believed that polymer additives can affect the stability of a large variety of flows and

that dilute solutions of these polymers have been shown to produce drag reductions

of over 80% in internal flows and over 60% in external flows under a wide range of

conditions. (Berman 1978, Sellin 1985 and Sellin & Moses 1989)

The major thrust of this work is to study the effects of polymer additives on

the stability of the incompressible mixing layer through large scale numerical sim-

ulations. In particular, we focus on the two-dimensional flow and examine how

the presence of viscoelasticity may affect the typical structures of the flow, namely
roll-up and pairing of vortices.

2. Accomplishments

_. 1 Problem definition

The flow is examined in a reference frame moving with the average velocity. In

such frame, the flow is characterized by the upper free-stream velocity Uo and the

momentum thickness of the mixing layer 6. We used a vorticity-streamfunction
formulation for Cauchy's momentum equation,

Dff

p_-_- --- -Vp + V-r (1)

This equation is closed through evolution equations relating the stress tensor to the

shear rate tensor. In all the subsequent analysis, the stress tensor is written as the

sum of two terms (Larson (1988) and Bird et al. (1987)):

r = r s -F r p = r/s"_, -I- r/pa = r/[n'_ -t- (1 -- _¢)a] (9)

1 Stanford University
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The first term corresponds to the contribution of the Newtonian solvent and is

proportional to the shear rate tensor with r/, the solvent viscosity. The second
term represents the polymeric contribution to the stress, and is proportional to the

tensor a with T/p the polymeric contribution to the shear viscosity. The parameter

_ _?0 _?s may vary between 0 and 1. When _ = 1, the field equations
,7, + r/p r/

and the constitutive equations can be decoupled, and the problem reduces to that

of purely Newtonian flow.
The tensor a satisfies the appropriate rheological equation that can be of differ-

ential or integral form (Bird 1967). In the present study, we used two rheological

models, the Oldroyd-B model and the FENE-P model.

£._ Rheological models

In the Oldroyd-B model, the polymer stress a satisfies the upper convected

Maxwell equation:
_a

+ = (3)

where:
6a 0a
-_ =-_+ff-Va-Vff J'.a-a'Vff (4)

is the upper-convected derivative of a, and A is the relaxation time of the poly-
mer. This model gives a reasonably good qualitative description of dilute polymer

solutions, but unfortunately, it gives rise to a steady state elongational viscosity
that diverges at a finite elongational rate. This unlikely behavior results from the

infinite extensibility of the linear Hookean spring used to model the polymer. In
order to avoid this problem, a nonlinear spring based on Warner law can be used

to describe the finite extensibility of the polymer, leading to the FENE-P model.
H(RR)

is best formulated in terms of the tensor B = - where (RR) isThis model kT

the configuration tensor, H the spring constant, k the Boltzmann constant, and T
the absolute temperature. The tensor B satisfies the following equation:

_6B= I (5)
ZB + _t

1 " R2") z trB -1
In Eq. (5), I is the unit tensor and Z = ( -(_-j} - - (1---_---) • The parameter

b - HR°_ where Ro represents the maximal possible extension of the polymer, is
kT

a measure of the extensibility of the polymer chain. An equivalent formulation of

Eq. (5) in terms of the tensor a can be obtained using the transformation:

ZB - I
a = ---- (6)

A
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2.8 Scaling and parameters

Using Uo and 6 as the reference velocity and the reference length, respectively,

the flow is characterized by the Reynolds number, Re - p6Uo _ 6uo, where u is
q v

the kinematic viscosity of the fluid, and the Weissenberg number, We = Auo
--_-, is a

dimensionless measure of the relaxation time of the polymer. The elasticity number
E- We Av .

Re - 6 _ Is often used to characterize the elasticity of the fluid. In addition

to Re and We, x and, in the ease of the FENE-P model, b are the other model
parameters.

2.J Numerical method

The simulations reported in this study were performed by solving the vorticity
equation:

0 Re V_]w [u_z _ (1__ x) :__2 02 02=- ]"+ Re [( (7)

coupled with the appropriate stress equations. In the present study, we are inter-

ested in the forced, temporally growing mixing layer. The initial flow is composed

of the viscously spreading tanh vortieity profile and the corresponding base-state

polymer stress, seeded with the wave that, according to linear stability analysis
(Azalez & Homsy 1993), has the largest growth rate.

The dynamical equations are solved using a pseudo-spectral method in which the

flow variables are expanded in a modified Hartley series (Zimmerman & Homsy

(1991)). The resulting set of ordinary differential equations is advanced in time

using an operator splitting algorithm (see e.g. Tan & Homsy (1987)). In addition

to those with the spectral code, a few simulations have been conducted using a

finite difference scheme second order accurate in space and in time. A description

of the scheme can be found in the paper by Orlandi et al. (1992). The results
obtained from these two codes were always in total concordance. The codes were

validated by comparing with the linear stability results (Azalez & Homsy (1993))
and by checking that they reproduced the same results as the Newtonian code when
we set x = 1.

A typical run for the roll-up of the non-Newtonian fluid required 128x128 spectral

modes and a time step At = 0.04. This resolution gives satisfactory results at

moderate values of the Weissenberg number and was refined for large values of We.
Throughout this study, the value of the parameter _ is fixed to 0.5.

3. Results

8.1 The Oldroyd-B model

The vorticity and stress equations for the Oldroyd-B model have been solved nu-

merically for various values of We, and for Re = 100. For small values of We (IYe ,_ 1 ),
the flow does not show any noticeable changes from the Newtonian ease. Numer-

ical simulations at moderately high We (We -,- 10) developed an instability that
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FIGURE 1. Vorticity contours for Re=lO0.
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lead to the divergence of the code. We examined the origin of this instability by

looking at the evolution of the different terms in the polymer stress equations. The

analysis of these terms showed that the instability is associated with a deficiency

of the Oldroyd-B model that allows stresses to grow indefinitely. The instability

starts to develop first in the braid regions where the product of the Weissenberg
number and the dimensionless local extensional rate exceeds unity. In these regions,

and due to high extensional rates, the chain is stretched rapidly, and because of its

large relaxation time associated with the high We, it is prevented from coiling up

as quickly as its stretching. As a consequence, the chain gets extended indefinitely

and the stresses grow exponentially. The intense build-up of the stresses ultimately

leads to the divergence of the numerical code.

3.2 The FENE-P model

Unlike the Oldroyd-B model, the FENE-P model does not allow infinite extension

of the spring used to model the polymer, and as we have seen, the maximal extension

of the spring is characterized by the parameter b. The viscoelastic mixing layer has

been successfully simulated for various values of the three parameters, Re, E, and

b. In what follows, we describe results for the two mechanisms of instability of the

two-dimensional mixing layer, namely the roll-up and the pairing of the flow.

3,$.1 Roll-up

We explored values of the Reynolds number between 50 and 400, varied the

Weissenberg number between 20 and 200, and examined values of b between 1 and

20. Figure 1 shows a time sequence of the roll-up of the flow for the Newtonian case
and for the FENE-P model. As it has been experimentally documented (Riediger

1988), we observed a trend for smaller values of the minimal (negative) vorticity in

the case of the viscoelastic flow, as well as a tendency for the vortex structures to

be more compact and to have longer life times than in the Newtonian fluid. The

global structure of the flow as well as the roll-up time are basically the same for both

fluids. However, the local distribution of the vorticity is affected by the presence of

the viscoelasticity in the flow with high gradients tending to appear in some parts of

the flow, namely in the braids. The evolution of the absolute value of the minimal

vorticity at various streamwise locations confirms the conclusion of the tendency to

have more _panwise vorticity remaining in the braid region.

The examination of contours of the first normal polymer stress (B11 - B22) showed

that there is a spatial correlation between the regions of intensification of the vor-

ticity gradients and those where there is a build-up of the first normal polymer

stress.

In order to understand the reasons why the global structure of the roll-up remains

unchanged, we examined the evolution of the polymer stresses in connection with

that of the vorticity (Figure 2). This study revealed that the first normal stresses

reach a quasi-steady state characterized by the absence of any extensional forces

and a balance between shearing forces and the polymer relaxation stresses, and it

is interesting to note the spatial relationships between vorticity and normal stresses

that characterize this quasi-steady state. After the first stage of roll-up, most of the
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vorticity is entrained into the vortex core with only little remaining in the braids,

while the stress fields are highest in regions of highest shear, which tend to lie in

nearly irrotational regions surrounding the vortex core. This feature may be key to

explaining why the global flow structure is unaffected by viscoelasticity.
Simulations at various values of the parameters E and b show that the estab-

lishment of the steady state for (Bll - B22) is, at least for the range of E and b

examined, a common trend of the evolution of the polymer stresses in free shear
flows and is insensitive to the value of E or b. A detailed discussion of this steady

state is found in the article by Azaiez & Homsy (1994)

3.2. 2 Pairing

We examined the pairing of the flow for Re = 50 and various values of E and b. In
the bulk of the simulations, we used 256 grid points in the streamwise direction and

128 grid points in the transverse direction and a time step At = 0.02. Simulations at

large E (E ,,_ 2) required a finer resolution and we used 256x256 spectral modes and
a time step At = 0.01. Figure 3 shows a time sequence of the vorticity contours for
the Newtonian fluid with Re=50 and the non-Newtonian fluid with Re = 50, E = 1

and b = 5. In the early stage, the flow shows the same trends for intensification

of the vorticity that we have encountered in the case of the single roll-up. Later
the two vortices start their orbital motion, with the tendency for a slightly faster

rotational motion in the case of the viscoelastic fluid. Note that during roll-up as

well as pairing, the vortices are more diffuse in the ease of the Newtonian fluid and
that the maximal absolute value of the vorticity over the whole flow is larger for
the viscoelastic fluid. We attribute the faster rotation of the two parent vortices

around each to the vortieity gradients that develop in the braids during the roll-up

of the flow. These gradients lead to a stronger outer field between the two parent
vortices that enhances the mutually induced rotational motion of the two vortices

(Azaiez & Homsy (1994))

4. Conclusion

In the present study, we examined the instability of the plane, incompressible,

non-Newtonian mixing layer, focusing on simulations with high Re and We. Numer-

ical simulations using the Oldroyd-B model developed an instability for moderate
We. We examined the origin of this instability by looking at the evolution of the dif-

ferent terms in the stress equations, which showed that the instability is associated

with a deficiency of the Oldroyd-B model that allows stresses to grow indefinitely.

The instability starts to develop first in the braid regions where the product of

the Weissenberg number and the local extensional rate is larger than one is larger
than one. The unbounded growth and intense build-up of the stresses ultimately

leads to the divergence of the numerical code. Most of the numerical simulations

have been performed with the FENE-P equations which revealed to be the most

appropriate model for the simulation of free shear flows at high elasticity. These
simulations showed that, for the range of parameters examined, the global structure

of the flow as well as the roll-up and pairing times are unchanged from the New-

tonian case. However, local vorticity intensifications associated with the build-up
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of normal stresses have been observed in the braids as well as in the vortex core.

As it has been experimentally documented (Riediger 1988), we observed a trend for

smaller values of the minimal (negative) vorticity in the case of the viscoelastic flow

as well as the tendency for the vortex structures to be more compact and to have

longer life times than in the Newtonian fluid.

The examination of the evolution of the first normal stresses revealed a very

interesting steady state characterized by the absence of any extensional forces and

a balance between shearing forces and the polymer relaxation stresses.
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Transition to turbulence in an elliptic vortex

By T. S. Lundgren I AND N. N. Mansour

1. Motivation and objectives

We study the three dimensional instability and nonlinear growth of the two-
dimensional flow described by the streamfunction

= Asinblxsinb2y
(I)

where bl = 7r/Ll, b2 = r/L2. This is a swirling flow in a box which is bounded by
0 < x < L1, 0 < y < L2 and is infinite in the z direction. This flow is a solution

of the Navier-Stokes equation with A = exp(-_,(b_ + b_)t) which slowly decays.

We seek a viscous solution which starts near this one and slips along but does not

penetrate the bounding wails. The vorticity of the basic flow is w_ = A sin bl x sin b2y
which has maximum value A at the center of the box and drops to zero at the

boundaries. We can think of the resulting flow as that of a captive vortex.

Denote E = L1/L_. What is interesting about this flow is that when E _ 1,
it is unstable to three-dimensional disturbances. Periodic waves grow along the

z direction, causing the captive vortex to distort into a snake-like configuration.

Components of vorticity perpendicular to the z axis grow. As the instability grows,

we find that the vorticity becomes increasingly sheet-like. Ultimately, the sheets
break up into a turbulent mixture of intense vortex tubes. When E = 1, the flow
is completely stable.

The streamline pattern of the basic flow is elliptical in the central part of the box,
with aspect ratio E, becoming more rectangular as the boundaries are approached.

Figure 1 shows the streamline pattern when E = 2. Bayly (1989) has shown analyt-
ically and numerically that the flow is unstable to high wavenumber disturbances

when the Reynolds number is large. At high wavenumber, the instability in this
bounded geometry is similar to the broad band instability in an unbounded flow

with elliptical streamlines and uniform vorticity studied by Pierrehumbert (1986),
Bayly (1986), Waleffe (1989, 1990), and Landman and Saffman (1987). The mecha-
nism for the instability is a resonance between inertial oscillations, which can exist

when the streamlines are circular, and the periodicity introduced by the ellipticity.

The work which motivated these studies was that of Orszag and Patera (1983).

They numerically found a three-dimensional instability on a flow which is a super-
position of a Tollmein-Schlichting wave and the Blasius boundary layer flow. This

flow contains an elongated elliptically shaped swirling region. It is believed that the

1 University of Minnesota
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FIGURE 1. Streamline pattern and vorticity contours for E = 2. The tick marks
are at .6 intervals in the x-direction and .4 intervals in the y-direction.

wavy instability which develops explains the generation of streamwise vorticity in

boundary layer transition.
An even earlier work of Gledzer e_ al. (1974, 1975) showed instability in a swirling

flow within an elliptic cylinder. The experiment consisted of rotating a water-filled

elliptic cylinder until solid body rotation was achieved. Upon stopping the rotation,
the water continues to rotate with approximately elliptical streamlines. It was

observed that the flow rapidly developed swirls perpendicular to the rotation axis,
with one or more cells depending on the length of the cylinder. Malkus (1989) did

clever experiments with a water-filled flexible cylinder which was made elliptical by

rotating it between stationary rollers. In this flow, the unstable wave rapidly flashes
into small scale turbulence.

There is another class of flows which is closely related to the present work. This

is the bending instability of a sharp-edged vortex with uniform vorticity exposed to

a transverse straining flow treated by Widnall, Bliss and Tsai (1974), Moore and

Satfman (1975), and Robinson and Saifman (1984). In this flow, wavy disturbances,
comparable in length to the dimensions of the vortex, grow on the vortex. In the
absence of the straining flow, non-rotating planar waves exist. The strain causes

such a wave to align with and grow along the plane of maximum strain rate. In our

flow, the vorticity distribution rises smoothly to a maximum at the center instead

of being sharp-edged, and there are finite boundaries; nevertheless, some of the

stability results are very similar.

In the present work, we show numerically that the basic flow described by Eq.

(1) is unstable at modest axial wavenumbers when the Reynolds number is greater
than a critical value. In section 2, we present stability diagrams which superficially

resemble those for two-dimensional parallel flows. In section 3, we present the

results of a nonlinear computation which clearly shows transition to turbulent flow.

2. Stability

For the stability problem, we set A = 1, neglecting the slow decay. This is similar
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to the traditional method of studying the stability of a growing boundary layer by

treating it as a parallel flow. In the usual way, we decompose the velocity field into
the velocity field U of the basic flow plus a small perturbation u _. The linearized
equations for u _ are

v. u' = o (2)

0u _

+ V. (Uu' + u'U) = -Vp' + vV2u '. (3)

We separate variables in the form

o_

u ' = exp ikzz -_1m,_.=_fi(rn' n)exp i(mbl x + nb2y)
(4)

OQ

v' =expikzz _ m,_ _(m'n)expi(mb'x= + nb2y) (5)

Oo

w' =expikzz E Cv(m,n)expi(mblx + nb2y) (6)

with a similarly defined pressure variable. (Note that we have suppressed the time

dependence in fi,_ and t_.) Upon equating coefficients of exp i(kzz + mblx + nb2g)

and using the continuity equation to eliminate the pressure, we get the following
equations:

Oft(re, n) blb_Rx(m,n)
- -v(m2b_+n2b_ +k_) ft(m,n) (7)o_ b_+ b_

where

and

OS(rn, n) bxb2Ry(m, n)
- - _(m_b_+ n2b_+ k_) ,_(._,n) (S)b_+ b_

R.(rn, n) = F(m,n)- mb21(mF + nG + k=H)
rn2b21 + n2b 2 + k2z

Ry(m, n) = G(m, n) - nb_(,nF +nG + k_H)
rn2b_ + hub 2 + k2_

(9)

(10)

m ts("n-l,n-1)+_(m-l,n+l)'" " 5(m+l,n 1) 5(m+l,n+l)]F(rn, n) =

n

+_ [5(m - 1,n - 1) - fi(rn - 1,n + 1)+ _(m + 1,n - 1) -fi(rn+ 1,n + 1)]

n

-_- [_3(rn - 1,n - 1) + b(rn - 1,n + 1) -b(m + 1,,l - 1) - 'b(m + 1,,, + 1)]
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___ [_(m _ l,n-1) + _(m- l,n + l) - _(m + l,n-1)- _(m + l,n ÷ l)] (11)

rn [e(m_ i,n- I)-F_(m - I,n-l-i)- e(m-F 1,n - I)- _3(m-FI,n-F 1)]G(m,n) = -'_

n

+2 [13(m- 1,n- 1)- _(m- 1, n + 1) + _(m + 1, n- 1)- _(m + 1,n + 1)]

m

+_ [a(m - 1,n - 1) - a(m - 1,n + 1) + a(m + 1,n - 1) - a(m + 1,n + 1)]

kz [Co(rn_ l,n-1)-_(m- l,n+ l)+Co(rn+ l,n-1)-Co(m + l,n+ l)] (12)+2-

m [Co(m-l,n-1)+Co(m-l,n+l)-fr(m+l,n-1)-ab(m+l,n+l)]
H(m,n) = -_

+4"n [_b(m-l,n-1)-Co(m-l,n+l)+Co(m+l,n-1)-Cv(m+l,n+l)] (13)

and, everywhere, t_(m, n) is given by

rn fi(m,n)+ n _(m,n) (14)
_b(m,n) = k,

Since _ can be eliminated from Rz and R U by means of the last equation, Eqs. (7)

and (8) are a system of linear equations for fi(m, n) and fi(m, n) for-co < m, n < co.
The conditions that the bounding box be impenetrable requires that u' be zero

for x = 0 and Ll for all y and z, and v' be zero for y = 0 and L2 for all x and

z. A consistent set of symmetry conditions which ensure these constraints are the

following, for all integer values of m, n,

fi(-m, n ) = -fi( m, n ) (15)

_(-m, n) = fi(m, n)

_b(-m, n) = _b(m, n)

a(m, -n) = a(m, n)

_(m, -n) = -fi(m, n)

tb(m, -n) = tb(m, n).

(16)

(17)

(18)

(is)

(19)

It follows from these that fi(0, n) = fi(m, 0) = 0 and that fi(0, 0) = ,3(0,0) = 0.

It can be shown that these conditions persist if they are satisfied by the initial
conditions. These conditions mean that Eels. (7) and (8) only have to be solved

on the first quadrant of the m,n plane, i.e., m = 0,1,2,...,N, n = 0,1,2,...,N,
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where N is a large integer where we truncate the system. For instance, if we write

Eq. (7) with m = 0 and some n, this would require F(0, n), and from Eq. (11) we

see that we would need 5(-1, n - 1). From Eq. (15), this is equal to -fi(1, n - 1),
which is within the solution set. In general, the column m = - 1 and the row n = - 1
are shifted into the solution set.

From the structure of the equations, one can see that an equation for mode (m, n)

is only coupled to four neighboring modes (m - 1, n - 1 ), (m - 1, n + 1), (m + 1, n - 1 ),

and (m + 1, n + 1). These are the nearest four on diagonal lines through (rn, n), and

these four are each coupled to the nearest four on its diagonals, and so on. This

means that the modes can be decomposed into two independent "checkerboard"

subsets, the "even" modes where m + n is an even integer and the "odd" modes

where m + n is an odd integer. This was pointed out by Bayly (1989).

In the numerical work, we have taken E = 2 and set the length and time scales by

taking the maximum vorticity of the basic flow to be unity (A = 1) and LI = 5.6,

L2 = 2.8. The Reynolds number is v -1 in this dimensionless scheme. One could,

of course, rescale the box so that one of the sides has unit length and rescale the

Reynolds number and wavenumbers accordingly. The reason for our particular

choice was determined by the requirements of the nonlinear code which will be
described in the next section.

Equations (7) and (8) were solved by a second order Runge-Kutta method over

a range of values of the parameters R_ and k_. Even or odd modes were excited

by taking initial conditions in which all the mode amplitudes were zero except

fi(2, 0) = 1 to generate even modes or fi(1,0) = 1 for odd modes. Energy growth
rates/3 were computed from

/3 = lira In(energy)
t (20)

where "energy" is the sum of the squares of all the mode amplitudes. It was nec-

essary to integrate for a long time to approach an asymptote in this formula. Over

the range computed, we have found that the cutoff N = 40 was adequate. The

results are presented in two figures. Figure 2 shows the neutral curve (/3 = 0) for
both even and odd modes up to Reynolds numbers of 2000. The band of unstable

wavenumbers rapidly expands with increasing Reynolds number. Figure 3 shows

the growth rate/3 versus wavenumber k_ at Reynolds number 2000. Computations

at Reynolds numbers 200, 500, and 1000 are similar, with a pronounced notch in

the odd mode curve. The growth rate curves computed by Robinson and Saffman

(1984) for the strained vortex have a similar shape made up of the union of sepa-

rate growth rate curves for modes with differing internal structure, which look like

inverted parabolas. The growth rate at their second peak (multiplying their result

by 2 to get energy growth rate) is about .3 for E = 2, which is comparable to our
value of about .24.

A result for unstable plane waves in the unbounded flow with elliptical streamlines

may be obtained from Landman and Saffman (1987). The result is

(21)
0._ 0
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FIGURE 3. Growth rate versus axial wavenumber at Re = 2000, E = 2: -- even

modes; ........ odd modes. Vertical dash is at the lowest wave number used in the

computation.

where w0 is the uniform vorticity, a0 is the inviscid amplitude growth rate, and

K 2 = k2 + k_ + k_. The factor two is inserted to convert to energy growth rate.
Now ao/wo is a function of e/'r/[= (E 2 - 1)/(E 2 + 1)] where _ is strain rate and "_

is wo/2. For e/7 < .7(E < 2.4), it is approximately

__=_(9(_)_woaO21 .1(_)2). (22)
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For an unstable wave with maximum growth rate, the wavevector makes an angle

of 60 ° with the rotation axis; therefore, k 2 + k 2 = 3k_2. Using this and v = 1�Re

gives

_o = 2(a0 4k_) (23)
_0 ,Re "

For our case with E = 2 and w0 = 1, we get

/Y=.3 8k'2 (24)
Re

For fixed Re, this gives a curve similar in shape to figure 2 with a maximum of .3

at kz = 0. A neutral curve may be derived from Eq. (24), namely

k: = .19Rle/2. (25)

We can check a few values. At Re = 2000, 1000, 500, and 200 the formula gives

8.50, 6.01, 4.25, and 2.68, which compare with the computed values 8.32, 5.81, 3.92,

and 2.25. The agreement is quite good at the larger Reynolds numbers. Equations

(24) and (25) should allow a reasonable extrapolation to Reynolds numbers larger

than those for which we have computed.

We conclude that the stability results are similar to those for bending waves on a

concentrated vortex at small wavenumbers and similar to results for an unbounded

flow with elliptical streamlines at large wavenumber, with comparable growth rates.

3. Transition to turbulence

Nonlinear computations have been performed on the Intel Hypercube (i860) using

a version of Rogallo's (1981) box code (the "pencil" code) written by Rogallo for

this parallel processing machine. This code was designed to solve the Navier-Stokes

equations in a box with periodic boundary conditions. The box is not required

to have equal sides, but must have volume (2_r) 3. We will take the sides to be

2L1 x 2L2 x L3 with the x and y dimensions double the size of the impenetrable

box. By using proper symmetry in the initial conditions, we can insure that there

is no flow across the surfaces x = 0, L1 and y = 0, L2. The finite dimension in

the z direction means that L3 is the longest axial wavelength allowed. Defining

bl = 7r/Ll,b2 = 7r/L2 as before and b3 = 2r/L3, the volume constraint makes

blb2ba = 1. The parameter b3 is the smallest non-zero axial wavenumber. Allowed

values are k, = bak, where k is an integer. Solutions in this periodic system are
thus of the form

N

u(x,y,z,t) = Z fi(m,n,k)expi(mb]x + nb2y + kbaz) (26)
m,n,k=-N

N

v(x,y,z,t) = _ 9(re,n, k)expi(mblx + nb2y + kb3z) (27)
m,n,k=--N
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FIGURE 4. Surface of 3/8 max vorticity at T = 55.66. Max vorticity is 2.01.

The tick marks are at .6 intervals in the x-direction and .4 intervals in the y- and
z-direction.

N

=  (m,.,k)expi(mblx+.b  +kb3z) (2S)
m,n,k=-N

Conjugate symmetry (fi(--m,-n,-k) = fi(rn, n, k)*, etc.) is imposed to ensure

that the velocity components are real. Symmetries in the initial conditions like

those in Eqs. (15)-(19) for each k ensure impenetrability of the side walls. For

instance, the velocity field of the basic flow, U = b2 sin blx cos b2y/(b 2 + b2), V =
-bl cos blx sin b2y/(b 2 + b2) is generated by the four modes

b2i

_(1, 1, O) = _(1,-1, O) = -_(-1, 1, O) = -_(-1,-1, O) - 4(b_ + b_)

_(1,1,0) = -_(1, -1, 0)= -_(-1,1, 0) ---_(-1,-1, 0) - 4(b_-l-b_) (29)

which have all these symmetries. Perturbations from this can be generated in many

different ways and will generate different flows. For instance, we could use random

small initial perturbations. For the flow computed here, we excited both even and
odd modes by

u' = .001 sin bl x cos b3kz + .001 sin 2bl x cos bakz (30)

with v' = 0 and the corresponding w' determined from continuity, that is,

_5(1,O,k) = -fi(-l,O,k) = fi(l,O,-k)= -fi(-1,0,-k) = -.001i/4
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X

FIGURE 5. Surface of 3/8 max vorticity at T = 61.71. Max vorticity is 2.78. See
Figure 4 for the value of the intervals on the axes.

h(2, 0, k) = -_(-2, 0, k) = z_(2, 0, -k) = -_(-2, 0, -k) = -.001i/4 (31)

for all integer k. With the cosine dependence in the z direction, the endwalls and

the midplane z = L3/2 will also be impenetrable.

Finally, we chose to do the computation with E = 2 = L1/L2 and L3 = _.

The volume constraint then makes L1 = 5.60, L2 = 2.8, L3 = 3.96, and then bl =

.56, b2 = 1.12, and b3 = 1.59. We have computed with Re = 2000 and N = 128.

The lowest wave number in the initial conditions, kz = 1.59, is shown in the stability

diagrams as a circle in figure 2 and as a vertical dashed line in figure 3. It is near
the position of maximum growth rate and was chosen for this reason.

The major results of the computations are presented in figures 4-9, where surfaces

of constant magnitude of the vorticity are shown at 6 different times during the

evolution of this flow. In each figure, the surface is of the vorticity value which is

3/8 of the maximum vorticity at this time. Both the time and the value of the

maximum vorticity are given in the figure legends. The coordinate axes shown have

x to the left, y vertical, and z off to the right. The viewpoint and illumination

are from the origin. At the initial time (not shown), the surface is approximately

an elliptic cylinder. The instability causes distortion into a wave oriented roughly

along a 45 ° plane with the vortex moving downward and toward positive x at the

ends of the box and upward and toward negative x in the middle. The secondary

flow which causes this motion also causes the vortex to be greatly distorted into

sheet-like structures which resemble the "cups" found by Rogers and Moser (1992)

in their study of the development of three-dimensional structure in a mixing layer

after the primary rollup into spanwise rollers. In figures 10a and 10b, we look
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FIGURE 6. Surface of 3/8 max vorticity at T = 70.43. Max vorticity is 5.50. See

Figure 4 for the value of the intervals on the axes.

FIGURE 7. Surface of 3/8 max vorticity at T = 79.09. Max vorticity is 9.61. See

Figure 4 for the value of the intervals on the axes.
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FIGURE 8. Surface of 3/8 max vorticity at T = 83.94. Max vorticity is 13.19. See
Figure 4 for the value of the intervals on the axes.

FIGURE 9. Surface of 3/8 max vorticity at T = 87.95. Max vorticity is 15.70. See
Figure 4 for the value of the intervals on the axes.
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FIGURE 10. Vorticity contours at the time corresponding to figure 6; a) on the

plane z = L3/2; b) on the planes z : 0 and z --- L3. See Figure 1 for the value of
the intervals on the axes.
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FIGURE 11. Contours of axial velocity on the plane z = L3/4 at the time

corresponding to figure 6. Solid contours are positive velocity, dotted contours

are negative velocity. Maximum velocities are +.35. See Figure 1 for the value of
the intervals on the axes.

at vorticity contours on cuts through the structure shown in figure 6 in order to
elucidate its structure. In figure 10a, we have taken the cut through the middle of

the structure along the plane z = L3/2. By symmetry only, the z component of

vorticity is nonzero on this plane. The maximum vorticity in the box, 5.5, occurs
at the center of the rather strong round vortex which is apparent here. In the

three-dimensional rendering this vortex is seen from in front and appears to be like

a horseshoe vortex. The heavier contour line in figure 10a is at the same vorticity
level as the surface in the three-dimensional view. In figure 10b, the cut is at the

ends of the box at planes z = 0 and z = L3, where again only wz is non-zero. The

maximum vorticity in the strong sheet-like structure is 3.5.

In figure 11, we show contours of the axial velocity w in the plane z = L3/4

through the same structure shown in figure 6. This is more regular than we expected
and shows characteristics of the 1,1 mode in Robinson and Saffman (1984). The

first 1 refers to the angular wave number and the second to the number of nodes in
the axial velocity. Here, despite the already complicated vorticity, the underlying

secondary flow of the instability is still evident, much amplified, with maximum
velocities 4-.35. Since w is zero at both ends of the box and in the middle, and w on

the plane z = 3L3/4 is just the reverse of that shown in figure 11, we can picture the

secondary flow as two eddies, one in each half of the box, with the velocity toward



FIGURE 12.

Transition to turbulence in an elliptic vortex

-1

10

-2

10

• lo-3

165.

10.6 ..............
10"1 10° 101 102

wavenumber

Energy spectrum at T = 87.95.

281

the center of the box in the lower part and away from the center above. Completion

of this circulation is such as to smash the vorticity downwards and toward positive

x at the ends while stretching it, and upward and toward negative x in the middle,

stretching it here also. What is remarkable is that this secondary motion is evident

throughout the entire sequence of views, even at the time of figure 9 where it is

quite irregular but with the main trends described above.

As we proceed from figure 6 to figure 7, the strong vortex which was evident in

figure 6 has disappeared. The central part has apparently been carried downward

into the compressive part of the circulation which decreased its vorticity below the

plotting level. The remnants of its sides have been stretched into the shield-shaped

vortex sheets on each side of the center. In the next view, figure 8, there is no

vorticity at the level plotted across the plane z = L3/2. This is not clear from

the figure, but when we rotated it we had an open view down the middle. The

structures we see are mostly tubelike now, and this is even more evident in figure

9, which is the time at which the maximum vorticity in the box is largest. At later

times, this begins to decrease, but the tubelike nature of the vorticity is evident

still at the time of 103.8 when we ended the computation.

Figure 12 shows the three dimensional energy spectrum at the time of figure 9.

While this is quite broad, indicating turbulence, we do not see a -5/3 range at this
Reynolds number.

4. Discussion

Our overall impression of this flow is of two large counter-rotating turbulent

eddies, each carrying many intense interacting vortex tubes. One can see the de-

velopment of this pretty clearly in figures 7 and 8, less clearly in figure 9. This

motion was already present as the growing secondary flow of the instability and
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X

FIGURE 13. Surface of 3/8 max filtered vorticity at T = 87.95. Max filtered
vorticity is 1.19. See Figure 4 for the value of the intervals on the axes.

was the controlling factor in the development of the vortex sheets. To understand
the large scale swirling motion without the masking effect of the small vortices, we

have filtered out the high wavenumber part of the velocity with a Gaussian filter
with width .2. We have computed the magnitude of the vorticity in this filtered

flow at the same time as in figure 9. The result is presented in figure 13 as a surface

of 3/8 of the maximum vorticity, which is 1.19 in this filtered flow. This looks like

a horseshoe vortex with two vortices wrapping around each of its counterrotating

legs. The head of the vortex, which is lifted up, contains the point of maximum

vorticity. The sense of motion is upward between the legs of the vortex and forward
over the top of the nose, which is the sense of rotation of the original swirling flow.

The evolution of the sheets into tubes appears to be through the Kelvin-Helmhotz

instability, or by the Lin-Corcos (1984) version which includes vortex stretching,

but nothing very dramatic occurs. Local thick spots gradually become thicker and

develop into tubes. In some preliminary computations at higher Reynolds number,

the cup-shaped vortex sheet developed into three clearly defined parallel vortex
tubes.

In the future, we plan to compute this flow at higher Reynolds number and greater

resolution with the objective of looking more carefully at the development of small

scale structure. As a generator of small scale turbulence, this flow is similar to the

Taylor-Green flow (Brachet et al., 1983). The present flow has some advantages for

the study of turbulence because of its development from a typical instability and the

fact that the turbulent region tends to avoid close contact with the impenetrable
boundaries.
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By R. L. LeBoeuf

The objective of this phase of an ongoing study is to obtain detailed three-

dimensional phase-averaged measurements of forced mixing layer vorticity devel-

opment and evolution. Acoustic forcing is being used to phase-lock the initial

development and subsequent pairing of the spanwise vortical structures. Phase-

averaged measurements of the three velocity components will permit the study of

three-dimensional vorticity distributions without invoking Taylor's hypothesis which

is known to introduce uncertainty. Currently two sine waves, one at the fundamen-

tal roll-up frequency and the second, its subharmonic, are being used to force the

initial roll-up and first pairing of the spanwise rollers. The two-dimensional mea-

surements described in this report were obtained in order to determine the best

operating conditions for the detailed three-dimensional study of the mixing layer
undergoing pairing via various pairing mechanisms.

1. Motivation and objectives

Being one of the fundamental transitional flows as well as a technologically sig-

nificant flow, the mixing layer has been scrutinized for many decades. Among the
experimental investigations, many, especially the earlier studies, involved one- and

two-dimensional measurements of time-averaged turbulence quantities. The results

of these studies have been useful for corroborating turbulence theories and tuning
turbulence models. In the late sixties and early seventies, the advent of the search

for coherent structures and their dynamics lead to more detailed studies of mixing

layer structure. For example, Winant & Browand (1974) showed that spanwise

vortex pairing is a controlling factor for mixing layer growth. Coherent structure

eduction, aided by artificial excitation of the mixing layer roll-up and pairing, has
continued through to the present.

In addition to the two-dimensional coherent structures discussed above, signs of
spatially coherent streamwise structures in plane mixing layers were identified in

flow visualization studies at Caltech during the early eighties (eg. Breidenthal 1981

and Bernal & Roshko 1986). Models of the three-dimensional mixing layer structure

(eg. Bernal 1981) and attempts to quantify the observations quickly followed. These

earlier studies were limited to three-dimensional time-averaged measurements (Bell

Mehta 1992), measurements of partial vorticity (Huang & Ho 1990 and Nygaard &

Glezer 1991) and/or the extension of temporal measurements to three-dimensional

grids using Taylor's hypothesis (Nygaard & Glezer 1991 and Tung 1992). The ap-

pearance of mean streamwise vorticity in time-averaged measurements confirmed

the existence of coherent spatially-stationary secondary vorticity in mixing layers

(Bell & Mehta 1992). However, the details and interactions of the secondary struc-

ture are lost through the averaging process. Furthermore, Taylor's hypothesis was
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shown by Zaman & Hussein (1981) to be inadequate for transforming temporal
measurements to a spatial grid for a circular jet - especially in regions of vortex
interactions. Included in this report is an extensive comparison of data generated

using Taylor's hypothesis to their true counterparts which indicates that the same
deficiencies also apply to a two-stream plane mixing layer.

In addition to the large set of mixing layer measurements, there have been several

computations of the mixing layer development. In one study related to the results

detailed in this report, a spatial simulation employing a two-dimensional vortex
method was used by Inoue (1992) to investigate the effect of double-frequency forc-

ing on the initial spanwise vortex development and subsequent pairing. The depen-
dence of the pairing mechanism on the relative forcing signal phase, demonstrated

earlier using two-dimensional temporal simulations (eg. Riley & Metcalfe 1980), was
confirmed. Three-dimensional spatial simulations of the mixing layer performed in

the late eighties (Buell 1991) clearly showed the presence and development of the

primary and secondary vorticity. Spatial simulations soon gave way to the more
economical temporal simulations (eg. Rogers & Moser 1992, Moser & Rogers 1993).

The sequence of temporal simulations which have since been conducted have been

used to clarify many of the details of the three-dimensional evolution of plane mixing

layers. However, limits imposed by the expense associated with computational grid
size and computation time make it difficult to evaluate the relationship between the

time-averages and the true structure using simulations, especially in in the mid- to

far-field regions of mixing layer development.

The objective of this study is to investigate the development of three-
dimensionality and transition to turbulence in a forced plane two-stream mixing

layer. Acoustic forcing is being used to generate specific pairing mechanisms which
would otherwise occur randomly in an unforced mixing layer. Phase-averaged mea-

surements are being used to then quantify the resulting vorticity development and
interaction. These measurements, coupled with the previous direct numerical simu-

lation results, should shed new light on the development of spatially evolving mixing

layers. In particular, the relationship between time-averaged measurements and the
three-dimensional structure will be clarified.

2. Accomplishments

_.I The experiment

The experiments were conducted in a mixing layer wind tunnel specifically de-

signed for free-shear flow experiments (Bell & Mehta 1989). The wind tunnel con-
sists of two separate legs which are driven independently by centrifugal blowers
connected to variable speed motors. The two streams merge at the sharp trailing

edge of a slowly tapering splitter plate; the included angle at the splitter plate

edge, which extends 15 cm into the test section, is about 1°. The test section is
36 cm in the cross-streanl direction, 91 cm in the spanwise direction, and 366 cm

in length. An adjustable side-wall is used to zero the streamwise pressure gradient.
To facilitate 3-D traversing, a slotted 3/32 inch thick aluminum plate was mounted

on the traverse which moves the probe in the streamwise (X) direction. The plate,
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which slides against the inside surface of the one side-wall, was large enough to allow

traversing in the streamwise direction of approximately 30 cm for a fixed traversing
table location.

In the present experiments, the two sides of the mixing layer were set to 12 m/s

and 7.2 m/s for a velocity ratio equal to that used by Bell & Mehta (1992) in the

same facility, r = U2/UI = 0.6 [)_ = (Ul - U2)/(U1 + U2)= 0.25]. These operating
conditions resulted in the lowest initial wake unsteadiness levels and free-stream

streamwise turbulence levels (u_/U_) of approximately 0.2% and the transverse levels

(vt/U_ and w_/Ue) of approximately 0.05%. The mean core-flow was found to be

uniform to within 0.5% and cross-flow angles were less than 0.25 °. The boundary

layers on the splitter plate were laminar at these operating conditions.

Velocity measurements were made using a single cross-wire probe which is ro-

tated in order to measure flow in two-coordinate planes. The Dantec cross-wire

probe (Model 55P51) consisted of 5 pm platinum-plated tungsten sensing elements

approximately 1 mm long with approximately 1 mm spacing. The probes were cal-

ibrated statically in the potential core of the flow assuming a 'cosine-law' response

to yaw, with the effective angle determined by calibration. The analog signals gen-

erated by DISA (Model 55M01) anemometers were sampled using a Tu_tin (Model

110-9C) 15 bit simultaneous sample-and-hold A/D converter with a multiplexed
connection to the computer.

Conversion of the hot-wire data to effective normal velocities is achieved on-

line through the use of look-up tables. The linear decoding afforded by using the
cosine-law allows post-experimental calculation of velocity statistics from effective

velocity statistics written to disk. Thi_ scheme, used for both time averages and

phase averages, substantially decreased (by approximately 60%) the experimental

run-time calculations required relative to calculating velocities for each time step

and subsequently averaging. Similarly, for velocity spectra measurements, the effec-

tive velocity spectra were calculated on-line using a Fast Fourier Transform (FFT)
routine, output to disk, and later decoded. The increased experimental run-time

calculations of this approach are more than offset by the savings in disk read/writes

required by saving entire time-series for post-processing of spectra. Additional time

savings were gleaned by using double-buffering, a scheme whereby a block of data is

acquired via the A/D converter and a previously acquired block of data is processed

simultaneously. In the future, a multi-tasking scheme may be employed in order to

perform the calculations during both the data acquisition and traversing times.

Due to the large quantities of data required by this study, many aspects of this

experiment were automated. The data acquisition and control systems are shown

diagrammatically in Fig. 1. A DEC Micro Vax Hcomputer using the VMS operating

system is the platform. While taking data for a single run, typically over the course

of many days, the MicroVax is able to coordinate the traversing, A/D control, blower

speed control, and relative phase of forcing signals without human intervention. To

insure measurement accuracy, a number of conditions including blower drift, hot-

wire calibration drift, forcing signal variation, and traverse malfunction are tested
periodically during every data acquisition run.
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FIGURE 1. Forced mixing layer data acquisition and control system.

Since the temperature in the laboratory may change by 10-15°C over the course of

a day, the test-section velocity and hot-wire calibration drift-checks are performed

approximately every ten minutes. If, during a drift-check, the cross-wire measure-

ments differ from the reference (measured using a pitot-static tube) by more than

1.5%, then a new constant angle calibration is performed and new effective velocity

look-up tables axe calculated. Note, since the yaw calibration is not automated,

the effective wire angles obtained from a yaw calibration at the beginning of each

run axe maintained for an entire run. This is not expected to introduce significant

error into the measurements since the wire angles would not be expected to change

rapidly. If either the hot-wire drift or the test-section velocity drift exceeds 2%, the

data acquired between the previous drift-check and the current one is re-acquired.

Since the traverse employs stepper motors operated in open-loop, the integrity of

the traverse locations is also tested. The threshold levels of roller actuated switches

are used to determine the calibration/drift-check location during each drift-check.

If the traverse is found to deviate more than 5% of the grid spacing (i.e. typically

0.5% of the spanwise structure size), then the previous data is re-acquired. After

each drift-check, the test-section velocities axe adjusted to the set-points (12 and

7.2 m/s) to within 0.3%. The forcing signals axe measured before and after each

plane to verify their integrity as well. Note, the true relative forcing signal phase

was determined by correlating the sine-wave generator outputs and phase-average

microphone measurements of the speaker output.
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A digital sine-wave generator capable of outputting up to four signals simulta-

neously was designed (by Dr. J. H. Watmuff) and built for this project. The

amplitudes and frequencies are tunable from the front panel of the device while the

relative phase of the sine-waves can be adjusted using front panel BCD switches or

digital input. The digital control of the relative phase by the MicroVax was used

during sequential runs for which the only parameter varied from one run to the

next was the relative phase. The forcing signals used to obtain the results shown in

this report consisted of the sum of a sine-wave at the fundamental roll-up frequency
(obtained from centerline spectra) and its subharmonic:

s(t) = Al,sin2rrflt + A2sin(27rf2t +/32)

where fl = 500 Hz and ]'2 = 250 Hz. The amplitude ratio (a = A2/A1), which

largely dictates the pairing location for multiple-frequency forcing (Inouye 1992),

was set equal to 2.0 for all of the measurements described in this report. However,

measurements of the speaker output indicated that the amplitude ratio was in

approximately 40. This forced the first pairing to occur at about 15 cm from the
splitter plate trailing edge.

The individual sine-waves were combined using a simple summing circuit and

output by an audio amplifier to a spanwise array of three four inch speakers. The

frequency response of the amplifier (Realistic SA-155) and speakers were rated at

20 Hz to 25 kHz and 55 Hz to 5 kHz, respectively. The speakers were mounted in

a rectangular wood box which, with the exception of a vertical slot, was lined with

foam to decrease the occurrence of acoustic reflections. The speakers were placed

directly across from the splitter plate trailing edge (see Fig. 1) at a side-wall slot

location. Measurements along the slot of the speaker box with a microphone showed

that the pressure induced by the speakers was uniform within 3% along the span

of the test-section. The sine-wave generator also output digital start sample pulses

and a clock signal with 2n pulses per cycle, where n can be any integer from 3 to 8.

These signals were used to synchronize the A/D sampling with the forcing signals.

For the phase-averages shown in the next section, 768 ensembles of 16 samples per
phase were measured. The internal A/D clock set to 2500 Hz was used for the

spectra measurements described in the next section. Low-pass filters (Krohn-Hite

Model 3343, LPF in Fig. 1) set to 1200 Hz were used to avoid aliasing the hot-wire

spectra measurements. Five hundred blocks were found to adequately converge the
256 sample spectral estimates.

2.2 Results and discussion

2.2.1 Spanwise structure coherence

Recognizing the importance of the structure-to-structure repeatability gained by

forcing the mixing layer, the first set of measurements were used to identify tile rel-

ative phase of forcing signals resulting in optimal coherence of the pairing spanwise

structures. Given the triple decomposition representation of the flow component
u_(x,t):

u,(x, t) = _(x) + _,(x,t) + u'/(x, t)
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where _i(x) = ui(x, t) is the local time-average, _i(x, t) =< ui(x, t) > is the periodic

unsteadiness, and u_'(x, t) is the random component of ui(x,t). Note, the overbar

denotes time-averaging while the brackets (<>) denote a phase-locked ensemble

average over one fundamental period. The measure of coherence used to characterize

the relative success of forcing was the ratio of the periodic contribution to the normal

Reynolds stress to the total normal Reynolds stress:

C i ---
< ui(x, t) >2

(< u,(x, t) > t))z

This quantity was averaged over a centerplane oriented normal to the mixing layer

(X - Y plane) for nine different relative phases (/32) ranging from 0 to 180 °. Note,

the phase is defined such that the forcing signal repeats for every 180 ° shift of the

subharmonic relative to the fundamental. The measurement grid consisted of 55

uniformly spaced X locations in the range 1 to 28 cm and 13 uniformly spaced Y

locations distributed over a linearly increasing range of -1 to 1 cm at X = 1 cm to

the range -2.5 to 2.5 cm at X = 28 era. The resulting distribution of the coherence

versus relative forcing signal phase is shown in Fig. 2. Clearly, the coherence displays

a broad peak between approximately 0 ° and 45 °, while the minimum is much sharper

at a phase of 90 °. The resulting centerplane phase-averaged spanwise vorticity
contours for the two extreme cases each at dimensionless time T = 0 are shown in

Figs. 3 (f12 = 22.5 °) and 4 (/_2 = 90°). Clearly, Fig. 3 illustrates the traditional

pairing mechanism for which two adjacent vortices begin to corrotate and finally

merge into a single larger vortex. This results in a higher coherence than the

shredding mechanism illustrated in Fig. 4. Double-frequency forcing with relative

phase (_2) set equal to 22.5 ° was therefore chosen for measurements of the usual

pairing mechanism. These results confirm that double-frequency forcing with a

relative phase of 90 ° results in shredding/tearing as shown by Riley & Metcalfe

(1980) using a 2-D temporal simulation.

To help clarify this observed variation of the mean coherence parameter, the

spatial distributions of the coherence parameter for the phases corresponding to the

peak mean coherence (_2 = 22.5 ° and 4 f12 = 90 °) are included in Figs. 5 and

6, respectively. The relatively higher average u component phase coherence for the

optimum forcing signal phase setting results from the recovery of the coherence near

the onset of pairing (X = 15 cm) and the minor recovery at the edges of the mixing

layer after pairing [see Figs. 5 (a) and 6 (a)]. Figures 5 (b) and 6 (b) show that at the

optimum phase, the v component coherence recovers to its peak value immediately

after pairing. This recovery does not occur for the shredding interaction. It remains

to be shown whether the loss of coherence in either of these cases is due to large-scale

jitter or small-scale motions. One possible scheme for isolating the contributions

of the small-scale motions and large-scale jitter is to simultaneously phase-average

the raw hot-wire signals and their low-pass filtered counterparts. For appropriate

low-pass filter settings, the ratio of the random contribution of the filtered signals to

the Reynolds stress to the total random contribution to the Reynolds stress would
be indicative of the large scale jitter contribution to the total randomness.



292

2.5

E

-2.5

R. L. LeBoeuf

(a)

J

I ! I I I

0.0 5.0 10.0 15.0 20.0 25.0 30.0

X (cm)

u

2.5
(b)

-2.5 -- I I I I J
0.0 5.0 10.0 15.0 20.0 25.0 30.0

X (cm)

FIGURE 5. Centerplane coherence distribution for/32 = 22.5 °. (a) u (b) v; 0.05

; 0.275 w_ ; 0.5------ ; 0.725 .... ; 0.95 ........ .

ILe.e Centerline spectra

With the exception of a relative phase shift, the coherence versus relative phase

relationship shown in Fig. 2 resembles the subharmonic amplification rate measured

in the near field of a double-frequency forced water tunnel mixing layer by Zhang,

H. & Monkewitz (1985). The phase shift, as mentioned above, is in part due to

the audio amplifier and may be augmented by the additional transfer function as-

sociated with the speakers. Nevertheless, to investigate this possible relationship

further, centerline spectra of the forced mixing layer were measured for relative

phases ranging from 0* to 180" in increments of 22.5 °. For each phase, u and v

spectra were measured for X ranging from 1 to 28 cm in 1 cm increments. Contours

of the streamwise [S,,(fl, X)] and transverse [Svv(fl, X)] spectra at the fundamen-

tal forcing frequency (fl) are shown in Fig. 7 (a) and (b). Similarly, the measured

spectra at the subharmonic frequency (f2) are shown in Figs. 8 (a) and (b). For the

phase range between 90* and 135", the subharmonic spectra of Figs. 8 (a) and (b)

begin to rise during the onset of the initial roll-up (at approximately X = 5 cm) and

maintain a plateau until pairing is complete. For that same range of forcing signal

phases, Figs. 7 (a) and (b) show a rapid amplification of the energy at the funda-

mental which begins to decay as pairing progresses. For the forcing phase leading

to shredding (82 = 90*), the subharmonic energy grows less rapidly and does not
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reach as high an amplitude as that for the high coherence phase range. Figure 7 (b)
illustrates the weak dependence of the initial growth of the energy at the fundamen-

tal forcing frequency on the relative forcing phase; a result demonstrated by Zhang,

Ho and Monkewitz (1985). Furthermore, the spectra at the fundamental frequency
decays more quickly for forcing signal phase leading to shredding. The combina-

tion of lower sustained subharmonic energy growth and more rapid fundamental

energy decay are apparently responsible, or at least symptomatic, of a decrease in
the coherence of the spanwise structure.

2.2.3 Taylor's hypothesi_ error

The sequence of centerplane phase-averaged u - v data obtained with forcing

relative phase set to 112.5 ° were also used to demonstrate the limitation of Taylor's
hypothesis (herein denoted TH) for the plane mixing layer. For each streamwise

location between X = 10 cm and X = 28 cm, TH was used to generate spatial

distributions of streamwise (u) and transverse (v) velocity components at upstream

locations using phase averaged data at different non-dimensional times. Note, a

single convection velocity (Uc = 9.6 m/s) equal to the average of the streamwise

velocities on the two sides of the layer (suggested by Zaman & Hussein 1981 based

on jet mixing layer comparisons) was transformed to X = X - Uct. The resulting
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streamwise TH grid spacing for the sampling rate used was then A)( = 0.24 cm

(i.e. less than half the true grid spacing). A central difference scheme was used to

calculate the spanwise vorticity which was then interpolated onto the true measure-

ment grid. The spanwise vorticity generated using TH was then directly compared

to that calculated from measured velocity components using a central difference

scheme. Using the field shown in Fig. 3 as the reference (i.e. t = 0), the results

of TH for locations before pairing (X = 13 cm), during pairing (X = 20 cm) and

after pairing (X = 25 cm) are shown in Fig 9. The TH vorticity contours appear

similar to their measured counterparts although a close examination reveals that

they differ in shape and orientation.
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To quantify the error resulting from this approximation, the difference between
true vorticity and the TH result, normalized by the peak true vorticity, is shown

in Fig. 10. Each of these plots shows the error at a given distance from the mea-

surement location (AX). The error for AX = 0 is shown in Fig. 10 (a). The error

would be expected to be zero since the measurement location and the approxima-
tion location coincide; however, the vorticity is calculated using differences of TH

results offset from the true location. Of course, the errors resulting from using TH

get progressively worse as the distance from the measurement location increases

as shown in Figs. 10 (b) (AX = 1.0 cm) and (c) (AX = 2.0 cm). The failure of

Taylor's hypothesis in this flow is especially prominent in the core of the spanwise

vortices before, during, and after pairing. Since the peak vorticity is typically or-

ders of magnitude greater than the vorticity of most of the field, the corresponding
percent error of the approximated vorticity is in general several hundred percent for
AX as low as 0.5 cm. These results confirm the observations of Zaman & Hussein

(1981) that Taylor's Hypothesis should be avoided if the details of the mixing layer
flow structure are of interest.

3. Future plans

During the remainder of the program, vortex interaction and transition to tur-

bulence will be studied using benchmark three-dimensional phase-locked measure-
ments of a plane mixing layer. In addition to the two pairing mechanisms observed in

the two-dimensional data sets shown in this report (normal pairing and shredding),

other combinations of forcing signals will be used to attempt to excite interactions

such as tripling, the second pairing, and possibly the third pairing. In this manner,

the pairing mechanisms which would normally occur randomly in time and space
can be isolated and studied in a real flow. This systematic study of the mixing layer

should not only increase the current level of understanding of mixing layer structure

interactions, but also provide a valuable data base for computation validation.
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Sound radiation due to boundary layer transition

By Meng Wang

1. Motivation and objectives

This report describes progress made to date towards calculations of noise pro-

duced by the laminar-turbulence transition process in a low Mach number bound-

ary layer formed on a rigid wall. The primary objectives of the study are to elu-

cidate the physical mechanisms by which acoustic waves are generated, to clarify

the roles of the fluctuating Reynolds stress and the viscous stress in the presence

of a solid surface, and to determine the relative efficiency as a noise source of the

various transition stages. In particular, we will examine the acoustic characteristics

and directivity associated with three-dimensional instability waves, the detached

high-shear layer, and turbulent spots following a laminar breakdown. Additionally,

attention will be paid to the unsteady surface pressures during the transition, which

provide a source of flow noise as well as a forcing function for wall vibration in both

aeronautical and marine applications.

Interest in flow transition as a potential noise source stems from the transient

nature of the transition process (Farabee et al. 1989). A clear understanding of the

phenomena has so far been elusive due to fundamental difficulties associated with

the strong nonlinear effects in the Navier-Stokes equation system. For this rea-

son, rigorous analytical studies are mostly concerned with the early, linear stages

of transition. For instance, Tam K: Morris (1980) and Akylas _¢ Toplosky (1986)

examined the sound emitted by linear instability wave packets in a plane shear

layer and a laminar boundary layer, respectively, by using multiple-scale pertur-

bation techniques. The analysis of Haj-Hariri &: Akylas (1986), although weakly

nonlinear, is limited to slightly supercritical Reynolds numbers so that the unstable

disturbance is only weakly amplified. Because of the small amplification rate for

linear Tollmien-Schlichting (T-S) waves in a boundary layer, the associated sound

field is typically of very small magnitude.

An alternate approach for studying flow induced sound is the theory due to

Lighthill (1952), which provides a formal expression for the linear acoustic field

driven by equivalent source terms representing the nonlinear turbulent fluctuations

in a spatially concentrated region. The theory, also known as acoustic analogy, is

essentially a rearrangement of the exact equations for mass and momentum con-

servation into a wave equation form. The driving terms on the right hand side

are assumed known a priori rather than treated as part of the solution, thus sim-

plifying the problem tremendously. For compact flows at low Mach number, this

assumption can be viewed as a leading order approximation to the fully coupled

acoustic-fluid dynamic system. By using the method of matched asymptotic expan-

sions based on small Mach number, Crow (1970) shows that Lighthill's solution is

adequate for sound emission from compact eddy regions. More recently, Mitchell
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et al. (1993) tested Lighthill's theory and its extensions against solutions computed
directly from the compressible Navier-Stokes equations, for the case of the merger

of two co-rotating vortices. Excellent agreement has been obtained.
To predict the emitted sound using acoustic analogy theories, one requires knowl-

edge of the source region, or the unsteady flow field. Traditionally, the source terms

are approximated by empirical correlations based on experimental measurements.
The rapid development in CFD applications in recent years has made it possible to

compute the transitional and turbulent flow quantities directly by solving the full

Navier-Stokes equations, thus allowing a more detailed assessment of the acoustic
source. With the currently available supercomputers, direct numerical simulations

(DNS) for controlled boundary layer transition can be carried out up to the lam-
inar breakdown stage (see, for example, Zang and Hussaini 1990; Kleiser & Zang
1991; Fasel 1990). This has motivated us to undertake the present work, focusing

on acoustic processes during boundary layer transition. By combining a DNS ap-

proach for the source region with modeling efforts based on Lighthill's theory, we
attempt to reveal the sound production features during the transition process, in

parameter ranges not accessible previously.

2. Accomplishments

_.1 Formulation

The continuity and momentum equations for a compressible flow above a flat

surface can be combined to generate, in dimensionless form,

°)' 0,+ M _ OXj OXj

O_p 02 (pu_) 02T_j
(1)Oz 10x i Ox iOx i

where

)Tii = puiui + _ - p - r 0 (2)

is called Lighthill's stress tensor. It contains the Reynolds stress (the term is used

in a generalized sense since puiuj contains both mean and fluctuating velocities),

deviation from isentropy (the second term), and the viscous part of the Stokes stress
tensor

r,, = + 3TM )" (3)

In (1)-(3), the velocity components and the thermodynamic variables are nondi-
! t

mensionalized with respect to the undisturbed free-stream values U_, Poo, Poo, and
I f t

T_, respectively. The spatial variables are defined by xi = xi/L f, where L_ is a
characteristic length scale of the flow field such as the boundary layer displacement

thickness and Xi = Mxi. The latter, resembling the outer scale in matched asymp-

totic expansions, is introduced here to facilitate the description of far field acoustic

propagation. We will be using xi and Xi simultaneously to represent the near-field

source region and the far-field observation points, respectively, bearing in mind that
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I I !

they are not independent of one another. The nondimensional time, t = t U_/LI,
is the same for both acoustic and fluid dynamic disturbances. The Math number is

defined in terms of the equilibrium sound speed in the free stream, M = U_/coo,' ' •
I I t -_

c_ = (TPoo/P_) , and the Reynolds number is defined as Re = U'L_I/v '.
Eqn. (1) is equivalent to a convective wave equation for a medium moving uni-

formly along the X1 axis, if the right hand side is viewed as distributed source

terms. In the spirit of Lighthill's theory, we treat the right hand side as pure fluid

dynamic quantities confined within the thin boundary layer and decoupled from

acoustic disturbances, on the basis that the latter are much smaller in magnitude.

Thus, the flow noise issue is reduced to a problem of finding the solution to (1)

under the appropriate boundary conditions once the flow field in known.

For a low Mach number flow, the proper scales for the thermodynamic variables

in the boundary layer are

p = 1 + M2/5, p = 1 + M_, T = 1 + M27 _. (4)

It can be easily shown that the governing equations for an ideal gas have the fol-

lowing form:

Ou----AJ= O( M 2), (5)
Oxj

Oui Oui 10_ 1 02ui

O--T + UJ Oxj - _/ Oxi + Re OzjOx i +O(M2)' (6)

a,_ Og 1 02._ 1 /"_-1'_ 02/5
O-t +us-- = +Oxj PrRe Oxj'Oxj _ OxjOxj

3'-1
+ --ffi-_ + O(M2), (7)

where the entropy _ = 15/7 -/_ is exactly the second term in Lighthill's stress tensor.

Eqns. (5)-(7) suggest that for low Mach number flows, one only needs to solve the

incompressible version of the governing equations in order to evaluate the acoustic

source terms with reasonable accuracy. In fact, the first two terms in the forcing

function in (1) can be ignored because they are of O(M 2) (cf. (4) and (5)). The

density in the Reynolds stress terms in (2) can be replaced by 1. The viscous stress

terms in Tit, on the other hand, must be retained at the moment even though they

appear to be O(M 2). As will become clear later, viscous stress tends to form dipoles
on the solid wall that are efficient acoustic radiators.

The effect of entropy change on sound production deserves special comments. Al-

though it is customary to ignore it entirely in the application of Lighthill's theory,

there is no clear justification for doing so in a transitional boundary layer, based

upon the above analysis. Eqn. (7) implies that the entropy production can be quan-

tiffed by solving a passive-scalar type of equation together with the incompressible

Navier-Stokes equations, rather than resorting to a fully compressible code. It would

be of interest to pursue this issue in a future endeavor. In the present work, how-

ever, we will focus on the Reynolds stress and viscous stress contributions to sound

production, assuming that the entropy effect is relatively small.
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If the O(M) effect of bulk flow convection is ignored, (1) becomes the Lighthill

equation in a uniform acoustic medium at rest. Its solution in the upper half space
X2 __ 0 can be written as (Crighton et al. 1992)

4_r[p()_,t)- 1]= M5 02 /vo Tij(ff,t- I)_- M_'[)OX,OXi IX- M_] dV(u-3

+ M5 02 /vo Tii(ff't- IX%- M_[)OX[OX; i._, _ Mg I dV(y-_

4 a f ra2(ff, t-I)(- My_)2M dS(y-'), (s)

where ._* = (X1,-X2,X3) is the image of the position ._ in the rigid surface

X2 = 0, and unlike indices i and j, a takes the values of 1 and 3 only. The volume

integrations are to be carried out throughout the entire source region, and the

surface integral should be evaluated on the wall. The three terms on the right hand

side of (8) represent, respectively, a volume distribution of acoustic quadrupoles,

reflection on the rigid surface, and a surface distribution of viscous dipoles. It

should be noted that the dipole term has a coefficient O(M -1 ) times larger than
that for the quadrupole terms, and hence it is not necessarily negligible despite the
apparent smallness of rij.

Under the assumption that the unsteady flow region is small in comparison to

the emitted acoustic wavelengths (compact source), (8) can be approximated by

4_r[p(X,t)- 1)] = M 5 X,Xj + X._X; [ 0 _i._13 -_Q,,(t- I._1)

3 (1+ _----')Q,j(t-[.'_1)]

Xo 1 (t I._1)] (9)

The quadrupole and dipole sources are

Q,j(t) = Ire Tij(!_,t)dV(y-'), Ro(t) = _s r_2(_,t)dS(!7). (10)
O

They do not contain the retarded potential as in (8) and are, therefore, straightfor-

ward to evaluate. In the far field, [-_1 :_ 1, only the first term in the two square
brackets in (9) are of importance.

It is sometimes of interest to calculate the sound field caused by a two-dimensional

boundary layer. A two-dimensional version of (8)-(10) has been derived by the

method of descent, i.e., by integrating (8) along the Y3 axis from -c_ to +oo,
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noting that the source properties are independent of Y3. For brevity, only the far

field solution for a compact source is presented here:

7r[p(X,t)- 1] = M 4 X_ _0 °°

1 0_

o1,.(,-Ixl

+ _4 X2 f0" 1 0 2 (t cosh(_)) d_--- = cosh=( )asQ= -IXl

3x, o R (t IXl )cosh(_)_ 1

The quantities Q]I, Q22, and Ra are surface and line integrals defined as

/ T,i(_7, t)dS(y-), Ri(t) =/_ r,2(!7, t)dC(y-'). (12)Qij(t)
JS 0 J(."O

A similar solution without the solid boundary effect has been obtained by Mitchell

et al. (1993), using a Green's function approach.

2.2 Numerical method and boundary conditions

In order to evaluate the acoustic source terms associated with boundary layer

transition, (5) and (6) are solved using an incompressible Navier-Stokes solver de-

veloped by Le and Moin (1991). The equations are discretized using finite difference

on a staggered grid, with uniform grid spacing in the streamwise (xl) and spanwise

(x3) directions. In the wall-normal direction (x2), non-uniform mesh is employed

to allow grid refinement near the plate. Time advancement is of predictor-corrector

type combined with a fractional step method. Each time step treats the convec-

tive terms explicitly and the viscous terms implicitly. The pressure is calculated

by solving the Poisson equation. The numerical scheme is second order accurate in

both space and time.

The domain of integration consists of a rectangular box that covers 5-10 stream-

wise Tollmien-Schlichting wavelengths in x] and one spanwise wavelength in xa.

The distance from the wall to the free-stream boundary is equal to 20 times the

inflow displacement thickness. A no-slip boundary condition is applied at the solid

wall. At the free-stream boundary, a normal velocity distribution based on the Bla-

sius solution is imposed; in addition, the vorticity is assumed to be negligible there.

In the x3 direction, periodicity is assumed of all dependent variables.

The inflow boundary conditions for the simulations are of the form

l 2D 2D¢ )eiOe-i3t
ui(xl = O) = Real u_(x2) + e u i (x=

le3DuaDT[ x xei[(asi no)xa__t]

+ _le3Du3D-:xi I,,2 )e/[-(°' sin ¢)xa-at] } (13)
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where u/B (x2) represents the Blasius solution for a 2-D boundary layer, u_D(xs ) and

u_V±(xs) are the least stable linear modes of the Orr-Sommerfeld (Squire) equation
for given frequency _/and oblique angle _. The eigenfunctions are normalized such

that the maximum streamwise velocity has a magnitude of 1. Since we are primar-
ily interested in laminar breakdown of the fundamental type, the same excitation

frequency is applied to both the 2-D and 3-D disturbances. For 2-D calculations,

one simply ignores the 3-D terms in (13).

At the outflow boundary, an idea/boundary condition must allow smooth passage

of disturbance structures while maintaining the correct mean velocity profile. The
convective boundary condition

u+ Oxl = 0 (14)

is frequently used for this purpose (see Pauley et al. (1988) for an extensive dis-
cussion), where U is the mean exit velocity. When tested for the case of 2-D T-S

waves, however, the normal velocity us exhibits point-to-point oscillations in both

mean and disturbance quantities (Fig. la). In addition, the mean velocity deviates

significantly from the true value (the top curve in Fig. lb) near the exit boundary
xl = 50. Errors for the streamwise velocity ul have the same absolute magnitude
as for us, but are less prominent in relative terms. These errors occur because of

unphysical boundary layers formed along the exit plane, which are not resolved

properly on the given grid (Johansson 1993).

An improvement has been made by replacing (14) with

Oui Oui (15)

where u B is the Blasius solution and Uj denotes the characteristic velocity at the

exit plane. Uj = (1,0, 0) for calculations presented in the present work. Eqn. (15)
ensures that the steady solution converges to the laminar velocity profile while
disturbances are allowed to be convected out of the domain. For turbulence simu-

lations, u/B should be replaced by the appropriate mean profiles, perhaps through
an iterative procedure.

One way to remove the wiggles in the disturbance velocities is by grid refinement

near the outflow boundary so that the unphysicai boundary layer can be resolved.

This is, however, expensive and often impractical. The method adopted in this
study is to employ a small buffer zone consisting of 5 to 10 grid points next to

the exit boundary. In this zone, the velocity field is filtered at each integration

step using an explicit, three-point low pass filter. As can be observed in Fig. lb,

this expedient approach removes the wiggles quite effectively. Since the buffer zone

is very small and located in the downstream direction, its impact on the overall

computational solution is expected to be negligible.

The time-dependent code is shown to be capable of producing and maintaining
steady state solutions that are in excellent agreement with the Blasius solution. It
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FIGURE 1. Streamwise distribution of mean (_) and disturbance (- )

normal velocities at x2 = 3.1, caused by T-S waves in a Blasius boundary layer.

(a) is obtained using outflow condition (14), and (b) is obtained using (15) with a

small buffer zone. The inlet Reynolds number Re_ = 1000.

has also been subjected to critical tests for linearly growing, small, two-dimensional

disturbances. The computational results agree well with linear stability theory

results in terms of both the eigenmode shape and the spatial amplification rate.

2.3 Preliminary results

2.3.1 $-D Tollmien-Schlichtin9 waves

The first numerical experiment conducted deals with the sound field produced by
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spatially amplifying, two-dimensional ToUmien-ScMichting waves. A 2-D version

of (5) and (6) is solved using 514 x 66 grid points in a domain (0 < xl < 200,
0 < x2 < 20), where the spatial coordinates are nondimensionalized relative to the

displacement thickness at the inflow boundary. The inflow Reynolds number based

on the displacement thickness is Re_ = 1000.

After a steady flow field has been established, inflow velocities are disturbed at

the least stable frequency corresponding to the 2-D eigenmodes described in (13).

The T-S wave train so created exhibits linear or nonlinear characteristics, depending
on the amplitude of boundary excitation, as demonstrated in Fig. 2. One notices

that, in both cases, there is no appreciable distortion in the T-S waveform near the
inflow/outflow boundary.

An attempt has been made to deduce the far-field sound emitted by the ampli-

fication and/or nonlinearization of T-S waves in the boundary layer. If the flow
Mach number is very small (say, 0.01, as in marine applications), the computa-

tional domain can be considered as a compact source, and (11) is valid. Numerical
integrations of (11) and (12) show basically harmonic density variations at the T-S

wave frequency at a given far-field point )_. However, it is discovered that the

amplitude of the sound signal alters dramatically when the front of the T-S wave

train crosses the outflow boundary. Further numerical tests verify the existence of
a strong, artificial boundary effect on the calculated sound level, which masks the

true sound of flow instability. This arises not because of the numerical boundary

condition treatment for the flow region, but rather due to the fact that the entire T-

S wave train is not included in the finite computational domain. Based on (11), the

calculated sound signal is determined by the time derivatives of the total Reynolds
stress and surface viscous stress in the source region. In the present case since the

source region has artificially defined open boundaries, the time variations of Qij
and R1 (ef. (12)) are caused primarily by T-S waves crossing the boundaries, rather
than by their slow amplification within the region.

The situation is best illustrated by considering an isolated 2-D wave packet, in-

stead of the entire wave series, as it traverses the the source region. The wave

packet is generated by multiplying the 2-D mode in (13) by exp[-((t- 210)/70)2].

The time history of the longitudinal quadrupole Q11 (the double dots denote second
time-derivative) computed from (12) is depicted in Fig. 3, which shows two distinct

regimes of oscillations, one as the packet enters from the upstream boundary and

the other as it exits at downstream. The effect of wave amplification and spreading

is represented by the relatively quiet regime in-between. Similar behavior has been
observed for Q22 and R1. The unphysical boundary effect on sound calculation

is probably exacerbated because of the compact source assumption. Non-compact

sources (larger M) are acoustically more efficient, and the boundary effect is ex-

pected to become less predominant. Nonetheless, an accurate assessment of T-S

wave generated sound is still impossible unless those artificial boundary effects are
eliminated or adequately accounted for.

In view of the small effect of T-S waves on sound radiation, we decide to con-

centrate on a practically more important issue - the sound generated by a local
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FIGURE 2. Streamwise disturbance velocity (Ul--Ulm¢a,,) as a function of x] at four

x2-1ocations (_ x2 = 0.44, .... x2 = 1.35, ----- x2 = 3.02, ----- x2 = 7.87) in

a Blasius boundary layer. The T-S waves are caused by a 2-D upstream excitation

given in (13). (a) e2D = 0.005, and (b) e 2D = 0.05.

breakdown of the laminar boundary layer.

_.3._ 3-D laminar breakdown

Simulations are under way for the three-dimensional development of boundary

layer instability that leads to laminar breakdown of the fundamental type. In or-

der to enhance grid resolution as well as to isolate the true acoustic source from

boundary-induced artifacts, the eigenmode excitation described in (13) is multiplied

by exp [-((t-80)/40)4]. This creates a perturbed flow region of limited streamwise
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FIGURE 3. Longitudinal quadrupole 011 calculated using (12) for the case of a 2-D

wave packet crossing the source region. The wave packet is created by disturbing

the upstream boundary for a short time duration, e2D = 0.01 and e3D = 0.

extent, completely enclosed within the computational domain. Numerical experi-

ments show that the isolated wave packet evolves in a way similar to that for regular

T-S wave series in forced transition, at least up to the multiple spike stage.

The following parameters are employed in the simulation: Re_ = 1000, e2D =

0.025, e3D = 0.01, 0 = 0, ¢ = r/4, and _ = 0.094. The latter corresponds to

the least stable frequency for 2-D T-S waves at inflow. Computations start out

on a 514 x 98 x 66 grid covering a physical domain defined in 0 < xl <_ 180,

0 < x2 < 20 and 0 < x3 < Az, where Az m, 25.95 is the spanwise wavelength.

As a detached high shear layer appears in the peak xl-x2 plane (cf. Fig. 4a), the

spatial resolution demand becomes increasingly severe for the unstable region as

the secondary instability intensifies and higher instabilities develop. Meanwhile,

the flow field for xz < 50 has become basically steady after the passage of the

disturbance structure. Consequently, the inflow boundary is moved from xl = 0 to

50, and the solution is interpolated onto a refined grid of 1026 x 98 x 130.

Results of the ensuing computation are exemplified in Figs. 4b-4d, which, like

Fig. 4a, plot the spanwise vorticity contours in the peak plane. The spatial reso-

lution requires further improvement. Nonetheless, these plots capture the essential

features of the shear layer roll-up and the formation of one, two, and multiple spikes

as time progresses.

Figs. 5 depicts time-variations of the quadrupole acoustic source terms Q,i cal-

culated from (10), again under the compact source assumption. In the calculation,

Lighthill's stress tensor is approximated by the Reynolds stress only; the viscous

stress contribution, computed separately, is found to be a factor of 10 -3 smaller.

The time instants corresponding to the four snapshots depicted in Fig. 4 are marked
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FIGURE 4. Instantaneous spanwise vorticity contours in the peak xl-x2 plane

during breakdown of high-shear layer. (a) t = 279; (b) t = 305; (c) t = 326; and
(d) t = 335.
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FIGURE 6. Surface dipole source (_/_1, .... 1_3) calculated using (10) during

high-shear layer breakdown. The time marks ta, tb, tc and td correspond to the four

snapshots in Fig. 4.

as t,, tb, re, and td in Fig. 5 for clear comparison. Due to symmetry with respect
to the peak plane, QIB and 823 vanish. The other four source terms are seen to

develop oscillations with higher frequency components relative to the basic T-S

wave frequency (the T-S wave period _. 66.8). Apparently, these higher harmonics
are associated with the roll-up of the detached high-shear layer. During the same

time period, the surface dipole/_1 calculated from (10) is still dominated by low

frequency behavior, as demonstrated in Fig. 6. However, it is expected to rise in

both frec_uency and amplitude as the shear layer near the wall intensifies. The other

dipole, R3, is identically zero again due to symmetry.
Because of insufficient data and relatively poor resolution for the source flow

simulation at the present stage, a more quantitative analysis of acoustic implications

is deferred to future work.

3. Future plans

The first priority is to improve the accuracy of the source field computation by

grid refinement and optimization so that reliable results for more advanced transi-
tion stages can be obtained. A nonuniform mesh in the streamwise direction should
allow much better resolution in the region of intense shear without increasing the

total number of grid points in that direction. As pointed out by Zang et al. (1989),

resolution requirements for numerical simulations of transition are extremely se-

vere, and inadequate resolution may result in less intense detached shear layers and

premature roll-up.
Once an accurate source field is obtained, attention will be focused upon the

radiated acoustic waves. We will analyze the sound characteristics and directivity
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associated with specific source mechanisms during boundary layer transition, and

we will identify the dominant contributors to the radiated sound field. The analysis

will not be restricted to compact sources; a more general formulation based on (8)

should be used to investigate the effect of non-compact source distributions.

In the long run, it would be of interest to study the sound of turbulent spots
and to compare the results with those due to laminar breakdown. A more difficult

extension of this work would be to include the coupling between the fluid motion

and the vibration of an elastic plate. Such flow-structure interactions are often

the dominant source of sound production and axe, therefore, of great practical

importance.
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1. Motivation, objectives, and approach

The motivation for this work is the fact that in turbulent flows where compress-

ibility effects are important, they are often poorly understood. A few examples

of such flows are those associated with astrophysical phenomena and those found

in combustion chambers, supersonic diffusers and nozzles, and over high-speed air-
foils. For this project, we are primarily interested in compressibility effects near

solid surfaces. Our main objective is an improved understanding of the fundamen-
tals of compressible wall-bounded turbulence, which can in turn be used to cast

light upon modeling concepts such as the Morkovin hypothesis and the Van Driest
transformation (Bra_lshaw 1977).

To this end, we have performed a direct numerical simulation (DNS) study of
supersonic turbulent flow in a plane channel with constant-temperature walls. All

of the relevant spatial and temporal scales are resolved so that no subgrid scale

or turbulence model is necessary. The channel geometry was chosen so that finite

Mach number effects can be isolated by comparing the present results to well-

established incompressible channel data (Kim, Moin & Moser 1987). Here the
fluid is assumed to be an ideal gas with constant specific heats, constant Prandtl

number, and power-law temperature-dependent viscosity. Isothermal-wall boundary

conditions are imposed so that a statistically stationary state may be obtained.

The flow is driven by a uniform (in space) body force (rather than a mean pressure

gradient) to preserve streamwise homogeneity, with the body force defined so that
the total mass flux is constant.

The variables are nondimensionalized by the wall temperature, the channel haif-

width, the bulk-averaged ("mixed-mean") density, and the bulk velocity, such that

!2 f+:- -_dy = 1 and _1f+:_ -f_dy = 1, where the channel walls are at y = + 1. All vari-

ables are henceforth assumed to be dimensionless, with p representing the density,

u = ul the streamwise velocity, (x, y, z) = (xl, x2, xa) respectively the streamwise,

wall-normal, and spanwise coordinates, and an overbar defines an average over time

and streamwise and spanwise directions. The nondimensional governing equations
are:

Op Op Ouj

Oui Oui 1 OT T Op 1 0rij

+ uj Ox----_= 7M 20xi 7M2p Oxi + Re p Oxj + ¢i,

OT OT Ou_ Oqj
-_ + uj _ = -(7 - 1)Tcgxj + 7(7 - 1)M 2 rij Oui "yRe p cgxj Re Pr p Oxj

(1)

(2)

+ s, (3)
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where

rij = p kaxj 4" axi 3 'J_';xl) and qj = --P-_xj"

The pressure is normalized by the bulk density and bulk velocity, so the ideal gas

law is p = pT/_/M 2. The body force term _i is nonzero ordy for i : 1. The purpose

of ,.q, the source/sink term in (3), is explained below. Equations (1) - (3) are to be

solved numerically subject to the isothermal, no-slip boundary conditions,

T=I and u=0 at y:+l. (4)

We therefore have as relevant nondimensional parameters (i) a Mach number,

M, based on the bulk velocity and wall sound speed; (ii) a Reynolds number, Re,
based on the bulk density, bulk velocity, channel halfwidth, and wall viscosity; (iii)

the Prandtl number, Pr; (iv) the ratio of specific heats, 7; and (v) the viscosity

exponent, n, where the dynamic viscosity p 0¢ T n. These 5 parameters are used
to define the various DNS runs. But besides choosing appropriate values for the

"physical" parameters, we will also artificially introduce another - to allow us to
differentiate between mean and fluctuation compressibility effects.

The Mach number appears in the energy equation (3) in the term that represents

the irreversible loss of kinetic energy into heat. Following Buell (1991), we interpret

(in our simulations) the actual Mach number M in (2) and the "dissipation Mach

number" Md in (3) as separate parameters. By setting Md to values different from

M in the DNS, we produce an effective heat source/sink ,$ in (3) which is given by

S = (M_ - M 2) 7(-Re_'-
1) Tij Oui

p Oxj"
(5)

Consequently, we can consider cases with different mean temperature profiles (and

thus different mean property variations) at the same M. Results from these "un-

physical" M _ Md DNS runs can, therefore, be used to determine the relative im-

portance of turbulent-fluctuation and variable-property influences at a given Mach

number.
Three DNS cases will be discussed, with the Mach number ranging from M = 1.5

to 3. All the runs share the same Prandtl number, specific heat ratio, and viscosity

exponent (Pr - 0.7, _ = 1.4 and n = 0.7), while the Reynolds number (for reasons

given below) is either 3000 or 4880. A summary of the parameters is listed in
table 1. Cases denoted by a single letter (A and B) in table 1 represent "physical"

simulations for which Md = M. For the Ma _ M run, Case AX, M = 1.5 and

Md = O. Since the temperature fields in both the physical and unphysical runs

depend almost exclusively on lPld (Coleman et al. 1993), this parameter combination

will produce the behavior of the "extra" source/sink S, eq. (5), that is necessary
to isolate mean and fluctuation effects. With Ma = O, S is such that the mean

temperature and density are constant across the channel, as we shall see below.

The DNS results were generated using the code developed by Buell to study

compressible Couette flow. During the computations, the body force _i is adjusted
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Table 1. DNS physical parameters.

Case M Md Re Pr 7 P

A 1.5 1.5 3000 0.7 1:4 T °'v

B 3 3 4880 0.7 1.4 T °v

AX 1.5 0 3000 0.7 1.4 T °'v

Table 2. DNS numerical parameters.

nx ny nz nxc nyc nzc Lz Lz

110 90 60 144 119 80 47r 41r/3

315

so that the total mass flux through the channel remains constant. (Once the flow

reaches a statistically stationary state the variations of _i with time are small). The

code utilizes a Fourier-Legendre spectral discretization along with a hybrid implicit-

explicit third-order time-advance algorithm designed to maximize the range of Mach

numbers that may be considered (Buell 1991). The numerical parameters used by

all three runs are given in table 2, where Lx and L, are the streamwise and spanwise

domain sizes, and (nx, ny, nz) and (nxc, nyc, nzc) are respectively the number of

expansion coefficients and collocation (quadrature) points in the streamwise, wall-

normal, and spanwise directions. The runs were made on the CCF and NAS Cray
YMP and C-90 computers at NASA Ames Research Center.

2. Results

An indication of the numerical fidelity of the DNS is provided by the streamwise

and spanwise one-dimensional spectra from the channel centerline and near the

walls, shown in figure 1. They are typical of those found from all three DNS runs in

their rapid fall-off at high wavenumber, which implies that the x- and z-resolution

is adequate. The "Legendre spectra" (not shown) also verify that the wall-normal

resolution is sufficient. The high wavenumber streamwise and spanwise spectra

of the velocity at both the channel centerline (figure l(a,b)) and near the wall

(figure l(c,d)) are similar to those found in the incompressible channel (see figure

3 of Kim et al. 1987). In the present simulations, we find that the density and

temperature spectra are closely related to each other and that their magnitudes are
much larger near the walls than they are at the centerline. The streamwise and

spanwise correlations in figure 2 are also roughly equivalent to the incompressible

results (cf. figure 2 of Kim et al. 1987) except for two characteristics: the large

spanwise coherence of the density and temperature at the centerline (figure 2b),

and the greater streamwise coherence of the p, u, and T fields near the wall (figure
2c).
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We first discuss the spanwise coherence at the centerline, which is thought to be

due to acoustic resonance. Evidence for this is provided first by the fact that

the coherence is not present in the velocity, and most significantly by the re-

sults in figure 3, which contrast the spanwise density correlation from an instan-

taneous field (one which contributed to the figure 2b curve) with that obtained

by eliminating the contribution from several "acoustic eigenfunctions." This is

done by projecting the DNS fields on eigenfunctions of the linear inviscid isen-

tropic problem for a given base flow. The acoustic density and velocity fluc-

tuations are respectively assumed to satisfy pa(x, t) = _"_k P"(k,Y) ei(k'x-_t) and

u_(x,t) = _-_kffi(k,y)e i(k'x-_t). At a given wavenumber k = (kx, kz), the lin-

earized, isentropic Euler equations in Fourier space in terms of the "acoustic eigen-

functions" qe(k, y) = (if(k, y), if(k, y), _(k, y), t_(k, y))T can then be written as

L(q) = wq, where

( Gn? + G-_ - i(p_)_ + G_ \

&2A )L(q) = kz_ - i(d-ff/dy)_ + kx -y p
kzu_"- ia2(p/p)y ' (6)

k &2

with a equal to the sound speed and _ = 0 at y = =1=1.

The projection of the full DNS field onto the acoustic subspace is performed by

computing the inner product f_+? qDNS" q*mdy of the DNS field with eigenfunctions

q* of the adjoint problem to (6), /_*(q*) --- wq*, such that f+: L(q). q*dy =_

f+_ q. L*(q*)dy. The adjoint operator is

)£*(q*) = _ kxuv--". + i_(p_)v - i(d-ff/dy)ff. ' (7)
\ G_G + G_,

where _'. = 0 at y = ±1.

When the base flow is uniform (no y variation), the eigenfunctions from (6)

are irrotational, and the eigenvalues w from (6) and (7) give phase speeds c_ =

Real(w)/G that satisfy

- c: = ±aI(er/2G) 2 + 1]'/2, (S)

where g is the wall-normal wave number (equivalent to the number of times IP_

and I_1change sign between -1 < y < +1). Here we use the Case A mean profiles

shown in figure 4 as the base flow and numerically compute solutions to (6) and (7),

which leads to "acoustic" (isentropic) eigenfunctions that do not satisfy the above

phase relation and, in fact, have nonzero vorticity near the walls. Near the channel

centerline, however, the eigenfunctions have a more typically acoustic behavior in

that their ratio of dilation to enstrophy is very large and in that a given g mode (now
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defined as the number of l_ sign changes) consists of an upstream- and downstream-
propagating pair t with positive and negative phase speeds relative to the centerline

velocity, _c - c=. The dashed curve in figure 3 represents the density field after the

isentropic modes qt that are recognized as acoustic in the range g = [0,..., 4] have

been projected and removed, for kxL,/2,r = [0,..., +4] (using conjugate symmetry

to account for k, < 0) and k,Lz/2_ = [-4,..., +4]. Only the eigenfunctions with

(a) very large dilation-to-enstrophy ratio near the centerline, (b) an equal number

of sign changes for Ip-'land for I_l, and (c) no more than two modes at each g -
one with positive and one with negative relative phase speed - were chosen from

the full inviscid isentropic function space to be included in the projection. The

second criterion is overly conservative: it is useful when automating the selection

t Although some _ modes appear to have only a single downstream-propagating component.
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process, but excludes a few modes (because of low amplitude "wiggles" in [_l) that

are thought to be acoustic rather than vortical. For this reason, and perhaps also

because of physical differences between the uniform and variable mean cases that

produce at certain _ no non-vortical modes moving upstream with respect to the

centerline velocity, the projection at some k did not include two modes for every _ in

the 0 to 4 range. Nevertheless, the magnitude of the reduction in figure 3 suggests

that there are significant acoustic disturbances within the simulation results. The

correlation at z _ 2 would presumably be reduced still further if more kz = 0

modes were used in the projection. Note that because the computations assume

that the channel walls are perfectly rigid (and use periodic boundary conditions),

any acoustic signals present in the DNS are not necessarily expected to be identical

to those found in a laboratory wind tunnel since in the simulations there is no

mechanism for the acoustic energy to radiate away.

The other difference, mentioned above, between the two-point correlations for the

present and incompressible DNS is in the larger near-wall streamwise correlations

found in figure 2c; this indicates that the near-wall streaks, which are characteristic

of wall-bounded turbulent flows (Robinson 1991), are more coherent in Case A

than in the incompressible channel results. At first glance, it might appear that the

streak modification is a low Reynolds number effect (so that the effective streamwise

domain size in wall units is smaller) since the Reynolds number based on mean

centerline velocity is higher in the incompressible DNS than that found here. The

variation of the local Reynolds number across the channel is shown by the dashed

curve in figure 5, and the centerline value (2770) is seen to be slightly less than the

3300 quoted for the incompressible channel data (Kim et al. 1987). But because the

isothermal boundary conditions lead to a flow with a maximum mean temperature

near the centerline and maximum density at the walls (figure 4), the mean kinematic

viscosity _/_ (where _ = 7") is maximum at y = 0. Therefore, the local Reynolds
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number in the present DNS is apt to be larger near the walls than for when v =
constant. This suggests that the enhanced near-wall coherence in figure 2c is solely

a compressibility effect, a fact that is reinforced by the Case B results. In order
to obtain a local Reynolds number profile Re-_6/-fi (where 8 = 1) at M = 3

(Case B) that remains comparable to that for Case A, the bulk Reynolds number
was increased from 3000 to 4880. As the Case B profile (dotted curve) in figure 5

shows, the Reynolds number is in fact at any y slightly larger than that for Case

A (dashed), which implies that the further increase shown in figure 6a (over that

seen in figure 2c) of the near-wall streamwise correlation for Case B is not a viscous
effect.

It therefore appears that the extra coherence is due to compressibility, although

its precise source is at this point uncertain. One possibility is near-wall viscosity
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fluctuations (Tritton 1961; Bradshaw & Ferriss 1971); another is small-scale acous-

tic fluctuations that are "channeled" along the cold, low-speed streaks, which act as

an acoustic "wave-guide." Fairly large turbulent Maeh numbers and r.m.s, density

fluctuations are found in both flows, especially near the walls (figures 7 & 8), which
might be evidence of significant dilational effects. However, the dilational field as-

sociated with the near-wall fluctuations is not so important as to directly increase
the turbulent kinetic energy dissipation rate to any great degree. This can be seen

from figure 9, which gives the ratio of the mean-square dilatation fluctuations to

those of the mean-square vorticity: the ratio of dilatational-to-solenoidal homoge-

neous kinetic energy dissipation (Zeman 1990; Blaisdell, Mansour & Reynolds 1993;
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Speziale & Sarkar 1991; Lele 1994). While the ratio increases by an order of magni-
tude as M increases from 1.5 to 3, it never becomes significantly larger than 10 -3.

On the other hand, the pressure-dilation correlation is found to be larger than 50%

of the solenoidal dissipation for both Mach numbers. Figure 10 shows that near

the walls the dilatational field creates a strong sink of turbulent kinetic energy as

kinetic energy is transferred to the pressure fluctuations (Blaisdell et al. 1993; Lele

1994), while toward the centerline, the pressure-dilatation acts as a smaller - but
still important - source of kinetic energy. In the future, we hope to understand the

link between the large negative lYU_, i and the observed wall-streak modification.

With such large dilational effects present, one might surmise that this flow is

not governed by Morkovin's hypothesis (Favre 1992), which states that relation-

ships between statistical properties of turbulence are unaffected by compressibility

if the r.m.s, density fluctuations are small (of order 1/10) compared to the abso-

lute density (Bradshaw & Ferriss 1971; Bradshaw 1977; Spina et al. 1994). But

the density fluctuations for both Mach numbers are within the allowed range of

O(1/10) (Figure 8), and for at lease one important statistical ratio, the mixing

length (-u-7_vt) 1/2/(d_/dy), Morkovin's hypothesis is found to work fairly well. Fig-
ure 11 demonstrates that this quantity is reasonably independent of Mach number.

With the invariance of the mixing length established, the so-called Van Driest

transformation for the mean velocity immediately follows. That is, the density-

weighted mean velocity

d_ + (9)

(where _ is the mean density at the wall and the + superscript denotes wall units),
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is expected to satisfy the incompressible log law,

1 In y+ + C, (10)

with ,¢ and C similar to their incompressible values, ,_ _ 0.4, and C _ 5.2 (Bradshaw

1977; Huang, Bradshaw & Coakley 1993; Huang & Coleman 1993). The mean

velocity in both wall units and the Van Driest form is plotted in figure 12 (using for

the latter a mixing length formulation for the mean temperature to write u+D as a

function of u--+, the surface heat flux and the mean surface temperature (Bradshaw

1977)). The agreement of the curves in figure 12b, especially their slopes, tends to

reinforce the validity of the Van Driest transformation (cf. Huang & Coleman 1993)
and, by extension, the Morkovin hypothesis.

Not all statistical ratios are found to be independent of Mach number, however,

as the Reynolds-stress correlation coefficients in figure 13 show. The near-wail max-

imum of [UlV']/Urm,Vrms increases from less then 0.5 for the incompressible channel

to over 0.6 for M = 3. (Note that for M = 0, this correlation coefficient does

not vary appreciably with Reynolds number (Kim et al. 1987), which points to

compressibility and not viscous effects as the source of the differences in figure 13.)
It thus appears that the isothermal-wall channel contains some "non-Morkovin"

phenomena. However, it would not at this point be appropriate to firmly state that

the results in figure 13 represent a formal contradiction to the Morkovin hypothesis

since the hypothesis does not (regardless of the density fluctuation level) claim to

account for the influence of spatial gradients of the mean properties (Bradshaw

1977), which are apt to be important for this flow. Evidence of just how important

can be found in the results from Case AX, for which Md = 0 so that the mean density
and temperature are constant (figure 14). The near-wall streamwise correlations for

Case AX are given in figure 15. No indication of the enhanced streak coherence

found for Cases A and B is observed (cf. figures 2(c) & 6(a)). Therefore, wall-

normal gradients of the mean properties are required for the streak modification to
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occur. The mean gradients are also necessary for the near-wall fluctuation effects

(which are presumably related to the streak coherence) to be present, as is shown

by the Case AX pressure-dilatation profile in figure 16 (solid curve). Compared to
the Md = 1.5 and 3 results, when the mean properties are uniform, p'u_, i is much

less important and represents a near-wall source rather than sink of kinetic energy.
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3. Future plans

An immediate task is to attempt to resolve the open questions regarding the extra

streak coherence induced by the compressibility. Namely:

A) How do the dilatation fluctuations inferred by the large pressure-dilatation cor-
relations influence the vortical field and hence the streak structure?

B) In what sense is the enhanced streak coherence related to the increased u'v'
correlation coefficient?

C) How do the variable-mean properties couple with near-wall dilatational fluctua-
tions?

Recommended long-term efforts include comparing the present results to those

computed for the adiabatic-wall channel (which to develop a statistical equilibrium

will require either one wall to be isothermal or for the flow to contain a distributed

heat sink). It should also be of interest to compare channel results to compress-

ible boundary layer turbulence and thus ascertain the importance of the acoustic

disturbances that are trapped between the channel walls but free to radiate away

in a boundary layer. New numerical schemes, possibly using a fully implicit time-

advance algorithm, should be developed to allow study of turbulent compressible

flows in the hypersonic regime.
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Effects of shock strengt ago 4"

shock turbulence interaction

By Sangsan Lee

Direct numerical simulation (DNS) and linear analysis (LIA) of isotropic tur-

bulence interacting with a shock wave are performed for several upstream shock

normal Mach numbers (M1). Turbulence kinetic energy (TKE) is amplified across

the shock wave, but this amplification tends to saturate beyond MI = 3.0. TKE

amplification and Reynolds stress anisotropy obtained in DNS are consistent with

LIA predictions. Rapid evolution of TKE immediate downstream of the shock wave

persists for all shock strengths and is attributed to the transfer between kinetic and

potential modes of turbulence energy through acoustic fluctuations. Changes in en-

ergy spectra and various length scales across the shock wave are predicted by LIA,

which is consistent with DNS results. Most turbulence length scales decrease across

the shock. Dissipation length scale (_q3/e), however, increases slightly for shock

waves with M1 < 1.65. Fluctuations in thermodynamic variables behind the shock

wave stay nearly isentropic for Mi < 1.2 and deviate significantly from isentropy

for the stronger shock waves due to large entropy fluctuation generated through the
interaction.

1. Motivation and objective

The presence of shock waves is an important feature that distinguishes high-speed

supersonic flows. Understanding the mechanisms of turbulence interacting with a

shock wave is not only of generic interest, but also of fundamental importance in

predicting the interactions of turbulent boundary layers with the shock waves which

occur in many engineering applications. Since the 1950's, linear analyses (LIA) on

the modification of elementary disturbance waves, such as vortical, acoustic, and

entropic waves, by the shock wave have been performed with an emphasis on the

acoustic wave generation behind the shock wave (Ribner 1953, 1954, 1968, Moore

1953, Kerrebrock 1956, Chang 1957, McKenzie and Westphal 1968). Recently, the

applicability of homogeneous Rapid Distortion Theory (RDT) on shock/turbulence

interaction was investigated by Jacquin et al. (1993).

There has been a significant accumulation of experimental data on the shock tur-

bulence interaction during the last decade. Interaction of turbulent boundary layers

with a shock wave over a corner was investigated by many research groups, among

them are Dolling and Or (1985), Andreopoulos and Muck (1987), Smits and Muck

(1987). A general finding from these experiments is that Reynolds shear stress and

turbulence intensities are amplified across the shock wave. The studies of oblique

shock wave/turbulent boundary layer interaction included several additional phe-

nomena which complicated the flow behavior (Honk,an and Andreopoulos 1992). To

isolate the effects of a shock wave on turbulence, several experiments (Debieve and
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Lacharme 1986, Keller and Merzkirch 1990, Jacquin et al. 1991, Honkan et al. 1992)

on the interaction between the shock wave and grid-generated turbulence have been

performed. They found that turbulence is amplified and turbulence length scales in-

crease across the shock wave. But the length scale increase contradicts the intuitive

expectation that mean flow compression should decrease the relevant turbulence

length scales. The issue of length scale change will be thoroughly discussed in the

present paper (See. 2.2).
Numerical simulations of the shock turbulence interaction are just beginning to

emerge. Using a shock capturing numerical technique, Rotman (1991) calculated

the change in a two dimensional turbulent flow caused by the passage of the traveling
shock wave. He found that the shock causes an increase in the turbulent kinetic

energy and that the length scale of the turbulent field is reduced upon passage
of the shock. Lee et al. (1991a, 1992) conducted direct numerical simulations of

two and three dimensional turbulence interacting with a shock wave. They found

that vorticity amplification compared well with the linear analysis predictions, and

turbulent kinetic energy undergoes rapid increase behind the shock wave. The

spectrum was found to be enhanced more at large wave numbers, leading to an

overall length scale decrease.

In the present report, interaction of isotropic turbulence with a strong shock wave

is studied to investigate the effects of shock strength on turbulence modification.

A numerical technique to simulate turbulence interacting with a strong shock wave

without resolving its structure was developed, and it validated this technique against

the shock-resolving simulations (Lee 1993). The simulation results are compared

with the results from a linear analysis, and they are contrasted against the results

from the weak shock case to show the shock strength effects.

2. Accomplishments

The parameters of the simulation are the mean Mach number (MI), the fluctua-

tion Mach number (Mr), arid the turbulence Reynolds number based on the Taylor

microscale (Rex) upstream of the shock wave. In the simulation, all of the turbu-

lence scales are fully resolved, while the effect of the shock wave on turbulence is

captured (rather than fully resolved). Two new simulations are conducted for the
interaction with strong shock waves M1 = 2.0, 3.0), and the results from shock-

resolving simulations (Lee et al. 1993) for the interaction with a weak shock wave

(M1 = 1.05,1.1,1.2) are quoted to investigate the effects of the shock normal Mach
number. Table 1 lists the simulation parameters, where the values of Mt and Rex

are taken at the location immediately upstream of the shock.

Table 1. Parameters for the simulations of shock turbulence interaction

Case M1 Mt Rex ko

A 2.0 0.108 19.0 4.0

B 3.0 0.110 19.7 4.0
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2.1 Turbulence velocity fluctuation

Interaction of turbulence with a shock wave generates acoustic waves downstream

of the shock, part of which undergo rapid decay (Ribner 1953). LIA predicts that

turbulent kinetic energy is amplified across the shock wave and the decaying acoustic

waves contribute significantly to the streamwise fluctuations just behind the shock

wave.

Figure I(A) shows the evolution of the diagonal components of the Reynolds stress

tensor, Rij " "= u i uj. The off-diagonal components stay close to zero over the entire
flow field since turbulence is isotropic upstream and axisymmetric downstream of the

shock. The streamwise component in the shock region contains the intermitteney

effects due to the oscillations of the shock. For more details of the intermittency

effects on turbulence statistics, see Lee et al. (1992). The boundaries of the shock

oscillations are defined as the locations where mean dilatation d'u" 1/dxl = 0; dUl/dxl

is negative inside the shock wave and slightly positive away from the shock due to

viscous heating. All the velocity fluctuations are enhanced during the interaction.

The velocity fluctuations are axisymmetric behind the shock, and their return to

isotropy is negligible compared to the decay. Away from the shock wave, all the

velocity fluctuations decay monotonically due to the viscous dissipation.

Mach number dependence of the far-field velocity fluctuation amplification pre-

dicted by LIA is shown in Figure I(B). All components of the velocity fluctuation

are amplified across the shock wave, and the amplification of TKE tends to satu-

rate beyond M1 = 3.0. The shock normal component is amplified more for shock

waves with M1 < 2.0 while the opposite is true for M1 > 2.0. In DNS, however, the

streamwise velocity fluctuation away from the shock is larger than the transverse ve-

locity fluctuations, which apparently contradicts with the LIA prediction. Viscous
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TKE dissipation rate behind the shock for the transverse components are found to

be significantly higher than the streamwise component. Therefore, comparing low
Reynolds number DNS results directly with the inviscid linear analysis is not fair.

After the viscous decay is compensated for by extrapolating the curves to the shock

location, the trend of amplification from the DNS is found to be consistent with the

LIA prediction.
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The rapid evolution of velocity fluctuations which was observed for weak shock
turbulence interaction (Lee et al. 1993) persists in the present simulations of strong
shock turbulence interaction. In order to understand the downstream evolution

of the velocity fluctuations, the budget of the Reynolds stress transport equation
downstream of the shock wave is investigated. All terms in the transport equation

can be accurately evaluated, since all the flow variables are fully resolved both

in time and space outside the shock wave. As for weak shock case, the pressure
I IItransport term ( (p u 1),1) in the inhomogeneous (or the shock normal) direction

is mainly responsible for the rapid evolution of the streamwise velocity fluctuation.
The evolution of the velocity fluctuations downstream of the shock wave predicted

by LIA is shown in Figure 1(C), which reproduces the main feature of the rapid
evolution from the DNS. Hence, the rapid TKE evolution behind the shock wave

can be explained mainly as a linear process. This rapid evolution in the streamwise

velocity fluctuation is due to a correlation between the vortical and decaying acoustic
fluctuations behind the shock wave. The acoustic velocity fluctuations and vortical

velocity fluctuations are anti-correlated just behind the shock, and the correlation
between the two fluctuations decreases rapidly as the amplitude of the acoustic

wave decays exponentially away from the shock wave. In previous studies (Lee et
al. 1991a, 1992, 1993), the correlations between vortical and acoustic waves were

not properly accounted for, and the prediction capability of the linear analysis was

not fully appreciated.
Another facet of the rapid evolution of velocity fluctuations is revealed by an

equation for linear acoustic energy balance (Thompson 1985). The continuity and
momentum equations for the linearized fluctuating components can be written as

Op' _k Op' -p_'"k = O,
-_ + -g_k + ox k

Ou]' _ Ou_' 1 Off Ocrl'k -- 0
--_ + uk Ox--_+ -pOx, Ozk

pao(-by assuming that there exist no mean flow gradients, where - " - r_) denotes the
viscous stress. For an ideal gas, an infinitesimal density fluctuation can be related

to the pressure and entropy (s) fluctuations by

p' 1 ff s'

where % is the specific heat at constant pressure. Multiplying the continuity equa-

tion by p', contracting the momentum equations by u_', and cancelling density-
dilatation correlation by using_above thermodynamic relation with neglecting en-

tropy fluctuation effect (-s'u_',i/%-5), the following equation (in the averaged form)

follows.

o -" "
2-p2 "7 p-E j -_3 0xk

-0.
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denote the boundaries of shock intermittency.

If this relation is satisfied the phenomenon can be explained in terms of linear
acoustic energy balance.

The acoustic balance equation isintegrated in the strean,wise direction from the

downstream side of the shock (z°) to give
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- ql Z
+IIT2- p211=,+2_ m • •

A B C

where Ilfll_ = y(b) - f(a). The integrated results are shown in Figure 2(A). In all
the cases we investigated (with different shock strengths and upstream turbulence

intensities) the acoustic energy balance is satisfied with little deviation. The rapidly

evolving acoustic energy -- sum of scaled density and velocity fluctuations -- is
found to be mainly balanced by the pressure transport once the decay due to viscous

dissipation is compensated. Therefore, the rapid evolution of velocity fluctuations

can be attributed to the acoustic energy balance: energy transfer from the acoustic

potential energy in the form of density (or pressure) fluctuations to turbulence

kinetic energy. This is consistent with the fact that the pressure-transport term

is scaled best by flow variables associated with acoustic wave propagation (Lee et

al. 1993). Note that density fluctuation is replaced by the pressure fluctuation

using the isentropic relation in deriving the acoustic energy balance equation, even

though entropy fluctuation behind the shock wave contributes significantly to the

density fluctuation (as is shown in Sec. 2.3). This is justified because as shown

in Figure 2(B) the neglected entropy-dilatation correlation is found to be less than

30% of the pressure-dilatation correlation in the zone of interest, and 5% of the

pressure transport term. Even though thermodynamic fluctuations are far from

isentropic, the contribution of entropy fluctuations to the acoustic energy balance

can be neglected. The entropy-dilatation correlation vanishes in the linear limit

and the acoustic energy balance derived above holds exactly in the linear analysis,

which ignores viscous dissipation.
Variance of vorticity fluctuation is a main contributor to the TKE dissipation

rate. Figure 3(A) shows the evolution of vorticity components. The transverse

components are amplified across the shock, while the streamwise component is

hardly affected. Mach number dependence of transverse vorticity variance ampli-

fication predicted by LIA is shown in Figure 3(B). LIA predicts no amplification

of the streamwise component. The amplification trend and its amplification ratio

obtained from DNS are found to be consistent with the LIA prediction.

2.2 Turbulence length scales

Experimental studies (Debieve et al. 1986, Keller et al. 1990, Honkan et al.

1992) have reported that large scale turbulent motions are enhanced more than
small scale motions as turbulence passes through a shock wave, leading to the

overall increase of turbulence length scales, especially of microscales. LIA predicts

that Taylor microscales decrease across the shock wave for all shock strengths,

which was confirmed by DNS for weak shock waves (Lee et al. 1991a, 1993). For

weak shock waves, changes in some turbulence length scales were too small to draw

definite conclusions on the issue.

To investigate the scale-dependent amplification of turbulence, the modification

of power spectra across the shock wave (M1 = 2.0) is computed through LIA for
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Amplification of transverse vorticity fluctuation variances predicted

the one dimensional spectrum in the shock-normal (longitudinal) and transverse

direction which is shown in Figure 4(A) and (B), respectively. In the longitudinal

spectrum, significant scale-dependent amphfication is observed: more amplification

at small scales than at large scales. Large scale part of E2(kl ) is even suppressed
through the interaction. In the transverse spectrum, more amplification at small

scales is found for Ea(k2) and E2(k2), while more amphfication at large scale is
found for E3(k2). The energy spectrum used in the analysis is the yon Karman
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FIGURE 4. (a) LIA prediction of the shock-normal direction (vs. ka) one dim-

ensional energy spectra change across the shock wave for M1 = 2.0:E1 :_ up-

stream, --.-- downstream, E2 & E3: .... upstream, ........ downstream. (b) LIA

prediction of the transverse direction (vs. k2) one dimensional energy spectra change
across the shock wave for M1 = 2.0: E2: _ upstream,-----downstream, E]:

upstream, ........ downstream, E3: .... upstream,----- downstream.

spectrum (Hinze 1975), but the results obtained in the analysis are insensitive to
choice of the spectrum. Since the spectrum amplification pattern is different for

different spectrum (e.g. El(k2) or Ea(k2)), the issue of the length scale change

should be addressed for the specific length scale only. In the following, changes in
various turbulence length scales are discussed.

To directly cheek the scale-dependent turbulence amplification, transverse power
spectra of velocity fluctuations in a numerically simulated field from ease A are

shown for upstream and downstream of the shock wave in Figure 5. Amplification is

more pronounced at the large wave numbers, which is consistent with the prediction
by the linear analysis in Figure 4(B).

Keller et al. (1990) reported that both the density microscale and the integral
length scale in the shock normal direction increase for shock waves with M1 < 1.24.

In the present simulation, the spectrum changes of density and temperature fluc-

tuations across the shock are found to be similar to those of velocity fluctuations:
Spectrum is amplified more at small scales than at large scales. The difference be-

tween the present study and the experiment may be due to the assumptions made

in the experimental data analysis, such as turbulence isotropy/homogeneity, and
negligible pressure fluctuations, which may be too crude in light of the simulation.

Velocity fluctuation variances are axisymmetric as shown in See. 2.1, and thermo-

dynamic property fluctuations are not isobaric and decay rapidly behind the shock

wave as shown in See. 3.3. The effects of these imperfect assumptions on the data
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analysis are not clearly documented in Keller et al. (1990).

Figure 6(A) shows the evolutions of Taylor microscales (_) and the transverse

density microscale (,kp), which are defined as

V 0;2

respectively. All the microscales decrease significantly across the shock wave: the
streamwise Taylor microscale by about 50%, the transverse Taylor microscales by

about 20%, and the density microscale by about 30%. Math number dependence of

Taylor microscale change predicted by LIA is shown in Figure 6(B). The higher the

Mach number, the Taylor microscales are reduced further through the shock wave.
The reduction is more pronounced in the shock-normal direction. The reduction ob-

served in the simulation agrees well with the LIA prediction. The Taylor microscale

which was reported to increase (Debieve et aL 1986) was the time scale, not the

length scale (Debieve 1992, private communication). If the mean velocity decrease
across the shock is properly accounted for, their experimental result is consistent

with the present simulation and analysis.
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Integral scale (A/) of turbulent fluctuation f' in the x2-direction is defined from
its two-point correlation, Ci(r; x] ), defined as

Ct(r; x,) = ft(Xl, X2, X3, t)ft(Xl, X 2 "_- r, X3, _,)

/'(x,, x2,_, t)/'(xl, x2,x_,t) '
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where the average is taken over time and homogeneous directions (x2- and x3-

directions). The integral scale (AI) is, then, defined as

hf(Xl) = C f(r; Xl )dr,

where the upper limit of the integration is replace by L/2 when dealing with numer-

ically simulated field with L being the computational box size in the x2-direction,

where the periodic boundary condition is enforced. Figure 7 shows the evolutions of

four integral scales throughout the flow field. Three integral scales (Au_, A.,_, and

Ap) undergo reductions a_ross the shock wave, most significantly in A_ by about

45%, while Aus increases by about 30%. Mach number dependence of the integral

length scale change can be predicted by LIA. For the shock wave with M1 = 2.0,
the ratio of the downstream to the upstream integral length scale (with the yon

Karman upstream spectrum) is 0.91, 0.60, 1.46 for A,,1, A,_, and A,3, respectively.

The simulation results agree well with the LIA predictions considering the difference

in the upstream energy spectrum shape (see Fig. 4).

Most widely used length scale in turbulence modelling is the dissipation length

scale (I_), defined as

I, = -pq3 / e,

where e is the dissipation rate of turbulence kinetic energy, which includes contribu-

tions from both solenoidal and dilatational motions. Figure 8 shows the evolution

of the length scale l,. The dissipation length scale also decreases across the shock
wave. Just behind the shock wave, the length scale undergoes rapid increase as

was the case with the streamwise Taylor microscale (Figure 6(A)), due to the rapid
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domain for M1 = 3.0. Vertical lines denote the boundaries of shock intermittency.

decay of the acoustic waves (or, the dilatational motions). The Mach number de-

pendence of the dissipation length scale change predicted by LIA is presented in

Figure 6(B). The length scale is reduced for strong shock waves, while it shows a
mild increase for shock waves with M1 < 1.65. For weak shock waves, TKE and

its dissipation rate is comparably amplified to give slight increase in l, across the

shock wave, while TKE amplification saturate much faster than vorticity variance

amplification to give the reduction in the length scale (Lee et al. 1993). The length
scale increase observed by Honkan et al. (1992) at M1 = 1.24 (the equivalent shock

normal Mach number in their experiment is 1.24 not 1.62) might be explained as

the phenomenon occurring for weak shock waves, but the analyzed experimental

results are not in quantitative agreement with the simulation and the analysis: LIA

predicts less than 10% increase, while the analyzed experimental data shows more
than 600% increase. This difference seems to suggest that the assumptions used

in the experimental data analysis may be too crude, such as negligence of pressure

fluctuations and applicability of Taylor's hypothesis in high intensity turbulence,

and should be examined carefully.

2.3 Thermodynamic quantities

Thermodynamic fields which are obtained from the freely decaying turbulence

(Lee et al. 1991b) and prescribed at the inflow are nearly isentropic. As the flow

passes through the shock wave, all the fluctuations are amplified, followed by a

decay. A general assumption on the relation between thermodynamic fluctuations

is polytropic (with a polytropic exponent n), where

p' p' n T"

p -p n-iT
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For polytropic fluctuations, specification of one property fluctuation and the poly-

tropic exponent is enough to describe the thermodynamic fluctuations. Based on

the above relations, different polytropic exponents can be defined using normalized

rms fluctuations (npp, npT) and the correlations between instantaneous fluctuations

(C T)

and

n,p= npT=l+

-_ ptT"
CpT = ] + -_ = .

T p,2

For weak shock waves with M1 __ 1.20, relations between thermodynamic prop-

erty fluctuations are close to isentropic (n = 7) throughout the flow field (Lee et al.
1993).

In order to check the polytropy for the strong shock case, the polytropic ex-

ponents, npp, npT, defined above are investigated. If the fluctuations are indeed

polytropic, the two exponents should be the same, which is defined as the poly-

tropic exponent. The evolutions of the two exponents are shown in Figure 10. The

exponents are the same upstream of the shock wave with npp = npT _ "7. Down-

stream of the shock wave, however, they differ significantly with npp decreasing and

npT increasing. Their return to polytropy is very slow. To further investigate the re-

lation between instantaneous fluctuations, the correlation between the fluctuations

of density and temperature (fT") is studied.
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The evolution of the exponent is also shown in Figure 9. Upstream of the shock

wave, the exponent is quite close to the 7(= 1.40). It drops significantly across the

shock wave, and its further evolution is rather slow. The change in the exponents

across the shock wave is found to be consistent with the LIA prediction (shown

in Figure 10). Upstream thermodynamic fluctuations are polytropic (close to isen-

tropic), and downstream fluctuations are not isentropic due to significant entropy

fluctuations produced by the shock turbulence interaction. To properly describe the

thermodynamic fluctuations in strong shock turbulence interaction, specification of

at least one thermodynamic fluctuation along with two exponents (i. e., npp and

npT) are required.

The shock strength effects on thermodynamic fluctuations for wider range of

shock normal Mach numbers can easily be investigated through the linear analysis.

In the following, polytropic exponents downstream of the shock in the interaction

of solenoidal velocity fluctuations with a shock wave is studied. The effects of the

shock strength on downstream polytropic exponents are shown in Figure 10. For

isentropic or acoustic fluctuations, all the exponents are same and equal to the

specific heat ratio. For entropic or isobaric fluctuations, npp and CpT become 0 and

npT becomes 2. For weak shock waves with M1 < 1.2, thermodynamic fluctuations

behind the shock can be regarded as isentropic. As the shock becomes stronger

beyond this limit, the entropy fluctuation behind the shock cannot be neglected, and

its importance becomes more dominant for the stronger shock waves. The results

of the polytropic exponents from DNS are consistent with LIA predictions with

the values from DNS systematically deviating from the LIA predictions toward the

isentropic value of 1.4. This may be due to (incompressible) pressure fluctuations

associated with dilatation-free velocity fluctuations (Sarkar et al. 1991), which

accompany mainly isentropic thermodynamic fluctuations.

In order to quantify the importance of entropy fluctuations behind the shock wave,

the contributions of acoustic and entropic fluctuations to the density fluctuation are

quantified by the linear analysis and also shown in Figure 10. Since the acoustic

fluctuations and entropic fluctuations are completely decorrelated in the linear limit,

the relative importance of entropy fluctuations can be expressed as
p-;-//_2" For weak

shock waves with M1 < 1.2, entropy fluctuations contribute less than 2% to the

density fluctuations. However, entropy fluctuations become more important than

acoustic fluctuations beyond M1 = 1.65.

In summary, thermodynamic fluctuations downstream of the shock wave are

found to be isentropic for weak shock waves (M1 < 1.2) and become non-polytropic

for strong shock waves, where the importance of entropy fluctuations are com-

parable to the acoustic fluctuations. The thermodynamic fluctuations cannot be

modelled using polytropic exponents in this regime. Therefore, modelling effort

should be made separately for the acoustic fluctuations and entropic fluctuations.

Zeman (1993) stressed the need for such a separation for the mean thermodynamic

quantities.
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3. Future plans

The varied evolution of thermodynamic variables in Large-eddy Simulation (LES)

using different formulations (where no explicit removal of aliasing errors is per-

formed) has not yet been understood. In order to have a reference case where alias-

ing errors are removed exactly, a specific volume formulation in solving compressible

Navier-Stokes equations is being pursued. Large eddy simulation of isotropic tur-

bulence with a shock wave will be performed once the cause for the difference in

the evolution of thermodynamic quantities is better understood.

Numerical simulation will be extended for a more practical situation where the

turbulent boundary layer is subjected to externally imposed strains: a boundary

layer under rapid expansion and over a compression ramp.

This work was produced in collaboration with Prof. S. Lele and Prof. P. Moin.
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Local isotropy in distorted turbulent

boundary layers at high Reynolds number

By Seyed G. Saddoughi

1. Motivation and background

This is a report on the continuation of our experimental investigations (Sad-

doughi 1993; Saddoughi & Veeravalli 1993) of the hypothesis of local isotropy in

shear flows. This hypothesis, which states that at sulTiciently high Reynolds num-

bers the small-scale structures of turbulent motions are independent of large-scale

structures and mean deformations (Kolmogorov 1941), has been used in theoretical

studies of turbulence and computational methods such as large-eddy simulation.

Since Kolmogorov proposed his theory, there have been many experiments, con-

ducted in wakes, jets, mixing layers, a tidal channel, and atmospheric and labora-

tory boundary layers, in which attempts have been made to verify - or refute -

the local-isotropy hypothesis. However, a review of the literature over the last five

decades indicated that, despite all these experiments in shear flows, there was no

consensus in the scientific community regarding this hypothesis, and, therefore, it

seemed worthwhile to undertake a fresh experimental investigation into this ques-
tion.

1.1 Plane boundary layer

In our previous reports, we presented hot-wire measurements of the velocity

fluctuations in the test-section-ceiling boundary layer of the 80- by 120-foot Full-

Scale Aerodynamics Facility at NASA Ames Research Center, the world's largest

wind tunnel. At our measurement location, the boundary-layer thickness, 6, was

about 1.1 m, and the maximum Reynolds numbers based on momentum thickness,

Ra, and on Taylor microscale, Ra, were approximately 370,000 and 1,450 respec-

tively. These were the largest ever attained in laboratory boundary-layer flows.

The boundary layer developed over a rough surface, but the Reynolds-stress pro-

files agreed with canonical data sumciently well for our purposes. Spectral and

structure-function relations for isotropic turbulence were used to test the local-

isotropy hypothesis, and our results established the condition under which local

isotropy can be expected.

Here we use a Cartesian co-ordinate system xi = (x,y,z) with x-axis along

the flow direction, y-axis normal to the solid surface, and z-axis in the span-

wise direction. The respective mean-velocity components in these directions are

Ui = (U, V, W), and the fluctuating components are ui = (u, v, w). Overbars de-
note time averages.

Our plane boundary-layer data showed that, to within the accuracy of measure-

ment, the shear-stress co-spectral density E12(kl), which is the most sensitive indi-

cator of local isotropy, fell to zero at a wavenumber about a decade larger than that
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at which the energy spectra first followed -5/3 power laws. At the highest Reynolds

number, E12(kl ) vanished about one decade before the start of the dissipation range,

and it remained zero in the dissipation range.

We found that the lower-wavenumber limit of locally-isotropic behavior of the

shear-stress co-spectra is given by ka V_/S 3 _ 10 where S is the mean shear,

OU/Oy, and _ is the average turbulent energy dissipation rate per unit mass. Our

investigation also indicated that for energy spectra this limit could be relaxed to

kav_/S 3 _ 3; this is Corrsln's (1958) criterion, with the numerical value ob-
tained from our data. The existence of an isotropic inertial range requires that

this wavenumber be much less than the wavenumber at the onset of viscous effects,

klq << 1 (77 is the Kolmogorov length scale), so that the combined condition (Corrsin

1958 and Uberoi 1957) is SX/- _ << 1.

Among other detailed results, it was observed that in the dissipation range, the

energy spectra had a simple exponential decay (Kraichnan 1959) with an exponent

prefactor close to the value/3 = 5.2 obtained in direct numerical simulations at low

Reynolds number. Plots of compensated spectra, k 5/3, E(kx ), proved to be a very

sensitive test in the inertial subrange. The Kolmogorov constants obtained from

the one-dimensional data at high Reynolds numbers satisfied the isotropic relations

for the spectra and the second-order structure functions, and the constant for the

three-dimensional spectrum, C, was estimated to be 1.5 =k 0.1 (Monin & Yaglom

1975). Spectral "bumps" between the -5/3 inertial range and the dissipative range

were observed on all the compensated energy spectra. The shear-stress co-spectra

rolled-off with a -7/3 power law and scaled linearly with S (Lumley 1967).

In summary, our results confirmed the local-isotropy hypothesis for "simple" shear

layers, and it was shown that one decade of inertial subrange with truly negligible

shear-stress co-spectral density requires SX/f_ not more than about 0.01 (for a

shear layer with turbulent kinetic energy production _ dissipation, this implies a

microscale Reynolds number of about 1500).

1._ Distorted boundary layer

The effects of extra mean strain rates on the large-scale structure of shear flows

(Bradshaw 1973) have been investigated extensively. The unanswered question for

us was "will our criteria for the existence of local isotropy hold for complex non-

equilibrium flows". Therefore, experiments to address this question were designed

for the 80- by 120-foot wind tunnel. One possible experiment was to study the

plane-of-symmetry flow in front of an obstacle placed vertically in a fully-developed
two-dimensional turbulent boundary layer, e.g. a circular cylinder placed with its

axis perpendicular to the plate. There have been a number of experimental inves-

tigations dealing with the large-scale structural changes that occur in this kind of

flow (Johnston 1960; Hornung & Joubert 1963; Belik 1973; Mehta 1984; Agui &

Andreopoulos 1990; Devenport & Simpson 1990; to name a few). In this type of

boundary layer, the pressure rises strongly as the obstacle is approached and in the

plane of symmetry of the flow the boundary layer is also influenced by the effects

of lateral divergence (Saddoughi & Joubert 1991). Hence, in addition to the basic

shear, OU/Oy, the extra strain rates involved in the flow are OU/Ox, OV/Oy and
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OW/Oz. To obtain the desired effects, the size of the cylinder should be at least of
the order of the thickness of the boundary layer. To conduct such an experiment

in the 80' by 120' wind tunnel, a very large cylinder had to be fixed to the ceiling

of the tunnel. This presented considerable construction difficulties. Here some of
the results taken in front of this cylinder at the highest speed of the tunnel will be

discussed.

2. Accomplishments

2.I Apparatu_ and measurement techniques

The only possible way for attaching an obstax:le to the ceiling of the 80- by 120-
foot wind tunnel was to use one of the existing light ports for this purpose. Since the

diameter of our test cylinder had to be larger than the clear opening of a typical

light port, we had to use two concentric cylinders. As shown in Plate l(a), the
1 H

main cylinder is a ready-made light-weight polyethylene tank (wall thickness = _ ,
1 I#

diameter D = 4' and height L = 6') and the inner (second) cylinder is a _ thick,

8" diameter aluminum (6061-T651) tube, which extends for about 6' into the attic
1 H

through the light port. Steel rods are bolted to the aluminum cylinder. A i thick
1 tt

high-density polyethylene plate and a g thick aluminum plate are respectively
bolted to the inside and outside of the bottom of the polyethylene tank. The

5 H 1 H
effective wall thickness at the bottom of the tank is _ . Another _ thick high-

density polyethylene plate is bolted to the top of the tank, and the space between
the aluminum cylinder and the tank is filled with high-density Polyurethane foam.

This provided us with a fairly light-weight (500 lb) and solid cylinder.
From the attic above the test-section ceiling, this whole unit was pulled up

through the light port and was attached to the attic structure. Plate l(b) shows
the test cylinder in place as viewed from inside the test section. The NASA safety

requirements were satisfied, and the cylinder and its attachments were designed for

maximum possible aerodynamic load and dynamic loading due to seismic activity
with an overall factor of safety of 5 on yield strength.

Another light port upstream of the cylinder was used for traversing the probe

through the boundary layer. Therefore, our measurement location was fixed at

x/D _ 0.85 with respect to the front of the cylinder. The measurement strategy,
instrumentation, and procedure were all similar to those explained by Saddoughi

(1993) and Saddoughi & Veeravalli (1993), and details will not be repeated here.

_._ Results and discussion

The measurements to be discussed here correspond to the maximum reference

velocity of the tunnel, UreI = 51.25 m/s. The normalized profiles of the longitudi-

nal mean velocity, U/Ur_ I, for the present distorted boundary layer are compared
with the profiles obtained for both the high-speed and low-speed cases of the plane

boundary layer in figure 1, where y is the distance from the wall. Also shown in

this figure are the least-squares polynomial fit to each of the data sets (solid lines),
which have been used to obtain the mean-flow integral parameters for each experi-

ment. The shape of the velocity profile for the distorted boundary layer is typical
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(a)

(b)

Plate 1. Test cylinder. (a) Outer (main) cylinder (polyethylene tank: wall thick-
1 tl

hess = _ , diameter D = 4 t, and height L = 6_) and the inner (support) cylinder

1 II Si I(aluminum 6061-T651 tube: _ thick, diameter and 12' height). (b) Test cylin-
der attached to the ceiling of the 80' X 120 _ wind tunnel, as viewed from inside the
test section.
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FIGURE 1. Normalized longitudinal mean-velocity profiles measured in plane

and distorted boundary layers, o , Urn! _ 50 m/s and o , Ur_I _ 10 m/s plane

boundary layer; ® , Ur_l "_ 51 m/s distorted boundary layer. The solid lines are

the least-square polynomial fit to each data set.

of the adverse-pressure-gradient flows: reduction in OU/Oy. The boundary-layer

thickness, 6 (the point where U/U_ = 0.995) has increased to approximately 1250
mm in the distorted boundary layer. Here the shape factor H _ 1.85, and in the

freestream the pressure coefficient C_ _ 0.23.

Figure 2 shows the normalized profiles of the normal velocity component, V/U,-el,

and the spanwise component, W/U,.el, which were measured by the X-wires in
UV- and UW-mode respectively. It can be seen that, as expected, in the plane of

symmetry of the flow the crossflow, W, is approximately equal to zero. A least-

squares polynomial fit to the V profile was used to obtain the values of OV/Oy.

The magnitudes of the extra strain rate due to the streamline divergence, OW/Oz,

influencing the plane of symmetry of the flow can be obtained from (OW/Oz) =

V(O_/Oz) (see e.g. Saddoughi & Joubert 1991), where _ is the flow yaw angle mea-
sured at different spanwise locations z. The profiles of fl measured by a yaw-meter

probe for three spanwise locations (z/D = -0.21,0,0.21) through the boundary

layer are shown in figure 3. The profiles are typical of three-dimensional bound-

ary layers: larger flow yaw angles near the wall than the freestream. Finally, the

continuity equation was used to obtain the OU/Ox values.

The profiles of the Reynolds normal stresses (_I/U_eI,-_2/U_I,u_3/U_I), and
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FIGURE 2. Normalized vertical and spanwise mean-velocity profiles measured in

the plane of symmetry of the distorted boundary layer. ®, V/Urel; ,_, W/U,.e I.
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FIGURE 3. Flow yaw-angle profiles measured in the distorted boundary layer at
different spanwise locations.
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FIGURE 4(A,B). For caption see next page.
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FIGURE 5. The structure parameter, ax -- -UlU2/q 2. The solid line is the

canonical smooth-wall value (Townsend 1976). For key to symbols see figure 1.

the shear stress, -uzu2/U_el, for the distorted and plane boundary layers are com-

pared in figure 4. The profiles for the distorted boundary layer appear to be quite

different from the plane flow case. The peaks of u_ and the shear stress, -uzu2,

profiles have moved away from the wall to y _ 300 mm, and in the outer part

of the layer the values of all the Reynolds stresses have increased. The changes

in the large-scale structure of turbulence can be seen in figure 5, which shows the

profiles of Townsend's structure parameter, al - (-u--'_/q2), where q2 (- u--7-_) is

twice the turbulent kinetic energy per unit mass. The large drop in the values of

this parameter in the inner part of the boundary layer, and their recovery to the

canonical values in the outer part of the layer are apparently due to the effects of

adverse pressure gradients (see Bradshaw 1967).

The spectral measurements of the three components of the velocity made at

y = 100 ram, 300 mm, and 500 mm are analyzed here. The location y = 300mm

was chosen because, as shown earlier, the peak of the Reynolds stresses occurred

at this position in the layer. For these three locations, the values of the extra-

mean-strain rates, (OVlOx)l(OV/Ou), (OYlOu)l(O z/ou), and (aWIOz)/(ov/ou)
are all larger than 0.1, which according to Bradshaw (1973) should produce large

non-linear effects on the large-scale structures of the boundary layer.

In figure 6, we examine the II(- z-_bijbii ) and III( =_ 1 bij bjk b_i) invariants map
of the Reynolds stress anisotropy tensor (Lumley & Newman 1977; Lee _: Reynolds

1985), b, i =_ (u--_/q _) - _,i/3, where _,j = 1 or 0 for i = j or i # j respectively.

The data points shown in this figure correspond to those positions in both the

boundary layers where spectral measurements were taken. It appears that for both

the plane and distorted layers, the values are close to the axisymmetric expansion

limit. However, note that there is a fairly large increase for the distorted boundary

layer, particularly at y -- 100 mm, which is represented by the highest point in each
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FIGURE 6. Anisotropy invariant map of Reynolds stress. Open and solid symbols

are for the plane and distorted boundary layers respectively. The maximum value

in each case corresponds to measurements at y = 100 ram.

data set.

As an example of the spectral measurements, figure 7 shows Kolmogorov's uni-
versal scaling of the one-dimensional longitudinal power spectra at the inner-layer

position of the distorted boundary layer and the mid-layer position of the plane

boundary layer, compared with a compilation of previous experimental work taken

from Chapman (1979) with later additions. The Reynolds numbers for the present
distorted boundary layer have increased substantially, and a maximum R_ _ 1960

has been obtained for the inner-layer position.

The intensity (or rapidity) of a mean strain rate can be measured in terms of

s = V_,jsij/2, (Lee & Reynolds 1985). To be consistent with our earlier definition,
we shall use S = 2s as the equivalent mean strain rate. To test the local-isotropy

hypothesis in the distorted layer, log-linear plots of the correlation-coefficient spec-

tra, Rz2(kz) -_ -El2(kl )/v/E]I(kl )E22(kl ), are plotted versus the non-dimensional

wavenumber kl yf'_-/S a in figure 8. In isotropic flow the shear-stress co-spectrum,
E12(kl), which satisfies fo E12(kl) dkl = -UlU2, is equal to zero. This indicates
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compilation is from Chapman (1979), with later additions.
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tions and freestream velocities in the plane ( .... ) and distorted ( ........ ) boundary

layers: wavenumber scaled with V/'_/S 3.

that for local isotropy the correlation-coefficient spectrum should fall to zero at

high wavenumbers. For all the three measurement positions in the boundary, the

Corrsin-Uberoi condition S_ --- SV/_ << 1 was satisfied. It can seen from figure 8

that at all the measurement locations Rz2(kz) reaches the isotropic value of zero at

kl V/-[/S 3 ,_ 10, which is the same limit found for the plane boundary layer for the

onset of local isotropy.

If the motion is isotropic, the transverse spectra E22(kl ) and E33(k1 ) are uniquely

determined by the longitudinal spectrum Ell(k1) (e.g. Batchelor 1953): E22(kl) =

E3s(kl) = ½(1 - kl _-k,, )Eal(kl). The transverse spectra, _2_r-'catc'1"['¢l)and _33r"cat_tt._l ),

can be calculated from the measured longitudinal spectrum, E_'_(kl ), using the
ECatCt k "_l Emeasi kabove equation. An anisotropy measure may be defined as a_ t 1 )/ oa _ h ),

where a = 2 or 3 corresponds to us or u3 respectively. These anisotropy measures

should be equal to 1.0 in an isotropic flow. We have used 9th-order, least-squares

polynomial log-log fits to the data to calculate these measures, which are shown

in figure 9 scaled using the length scale V/_S 3. The data for the plane boundary

layer are also shown in this figure. It is obvious that the uncertainty in estimat-

ing the S values for the distorted boundary layer is larger than the plane case.
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However, it appears that a reasonably good collapse is obtained and local isotropy

of energy spectra is achieved (+10%) in the inertial subrange for non-dimensional

wavenumbers kl V_S 3 > 3.

For both plane and distorted boundary layers, the collapse of the longitudinal

and transverse spectra achieved using v_S 3 and _/_ as length and velocity

scales, respectively, is shown in figure 10. As to be expected, these scales will not

collapse the low and high-wavenumber ranges of the spectra. Also marked on this

figure is the wavenumber corresponding to the start of R12(k] ) _ O, which is about

one decade higher than the start of the -5/3 law on the energy spectra. This

plot clearly demonstrates the fact that a -5/3 law does not necessarily imply local

isotropy. We also note that in the high-wavenumber range the extent of the -5/3

law does not increase with R_, but it is a function of (¢/$2v), which is the Reynolds

number based on the above length and velocity scales. However, the accuracy of

this observation will be examined further after completing the upcoming low-speed

measurements.
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Computation of large-scale
in decaying isotropic turbulence

By Jeffrey R. Chasnov

1. Motivation and objectives

The most basic result in a study of decaying isotropic turbulence is the evolution

of the kinetic energy as a function of time. By postulating a self-similar decay of

the energy spectrum based on an exact invariant B0 of the flow, Saffman (1967a,b)
determined the high Reynolds number decay law

2 8

(u 2) (x B_)t-_ (1)

where B0 is the leading coefficient of the energy spectrum near k = 0

E(k) ,,, 2rrB0k 2 k -_ 0. (2)

Saffman's determination of the high Reynolds number decay exponent was based

on earlier work by Kolmogorov (1941) in which it was assumed that a self-similar

decay of the spectrum could be based on the invariance of the Loitsianski integral
B2 (Loitsianski, 1939), yielding the decay law

(n_) _, B_ t-_ (3)
where now

E(k) ... 27rB2k4 k --. O. (4)

However, it was later shown (Proudman & Reid, 1954; Batchelor & Proudman,

1956) that B2 was in fact not invariant and depended on time during the turbulence
decay.

However, one may still postulate an exact self-similar decay of the energy spec-
trum at large-scales (Lesieur, 1990). If it is assumed that

B2(t) = _t_, (5)

then (3) still holds but with B_(t) given by (5). When 7 is positive, as is indicated

by numerical simulations and quasi-normal closure models, this results in a less

rapid decay of the energy as t-l°/r+2_/7.

We have performed large-eddy simulations of decaying isotropic turbulence (Chas-

nov, 1994) to test the prediction of self-similar decay of the energy spectrum and

to compute the decay exponents of the kinetic energy. In general, good agreement

between the simulation results and the assumption of self-similarity were obtained.

However, the statistics of the simulations were insufficient to compute the value of

7 which corrects the decay exponent when the spectrum follows a k a wavenumber

behavior near k = 0. To obtain good statistics, it was found necessary to average

over a large ensemble of turbulent flows. We report on this work here as well as in

a recent Physics of Fluids A letter (Chasnov, 1993).
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2. Computation of the Loitsianski integral

The coeffcient B2 above, the so-called Loitsianski integral, can be written as an

integral over the infinite flow volume as

B2 - 487r 3 (ui(x)ui(x + r))r2dr. (6)

To compute B2 by numerical simulation, we assume that the velocity field is

periodic in three directions with periodicity length L = 2rr. The velocity field may

then be expanded in a Fourier series as

u(x) = _ f_(k)exp(ik, x), (7)
k

where the components of k in the sum span the set of integers. A good approxi-

mation to homogeneous turbulence is thus obtained when the integral scale of the
turbulence is much less than 7r. Treating the average in (6) as a volume average,

and substituting the Fourier expansion (7) into (6), we obtain after one integration

over the volume

B2 - 48_r3 Y_ fii(k)fii(-k) exp(ik, r)r2dr. (8)
k

The remaining volume integral in (8) may be evaluated analytically, and making

use of a_(-k) = a,(k)', where * denotes the complex conjugate, and fi,(0, 0, 0) = 0

we obtain

2 (-1) k + k,o)l + la(o,o,k)12], (o)B2 = - § k2
k=l

There are two main difficulties in the direct use of (9) to compute B2 in a numer-

ical simulation. Firstly, the correlation (ui(x)ui(x + r)) in (6) decreases in general

as O(r -5) in homogeneous turbulence (Batchelor & Proudman, 1956) - although
it decreases faster as o(r -6) in an isotropic turbulence - so that the integral scale
of the turbulence must be small enough for the integral in (6) to converge within

the computational domain. Secondly, as the value of r in (6) becomes comparable

to rr, the replacement of the ensemble average in (6) by a volume average becomes
inaccurate because of a lack of sample of the largest computed scales. Explicit

computation has shown that direct use of (9) to compute B2 in a single realization
of a turbulent flow is highly inaccurate. We are thus led to average B2 over an
ensemble of such flows. This is equivalent to treating the original average in (6) as

a combination of a volume and ensemble average.

In this research brief, we report on a computation of B2(t) accomplished by

performing 1024 independent simulations of resolution 643 . The size of this en-
semble is sufficient to compute B2(t) to a statistical accuracy better than 5% over
the entire time-evolution considered. The computations are performed on an Intel
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iPSC/860 hypercube parallel machine containing 128 processors. The machine had

eight megabytes RAM per processor which allowed 64 realizations to be performed

in parallel with each independent realization computed on 2 processors. Commu-

nication between processors computing different realizations is minimal so that the

simulation of an ensemble of turbulent flows makes very efficient use of parallel

computer architectures. Sixteen independent runs -- each of 800 total time-steps

-- were performed. With each time-step taking approximately 10.6 seconds of cpu

time, a total of 38 hours of dedicated machine use was required.

Our main goal in computing B2(t) is to determine its long time, high Reynolds

number behavior. Under the constraints imposed by 643 resolution simulations, this

necessitates the use of a large-eddy simulation with the initial peak of the energy

spectrum placed at as large a value of k magnitude as possible (Chasnov, 1994).

Here, the initial energy spectrum is taken to be

E(k,0) = 27rB2(0)k 4 exp [-2(k/kp)2], (7)

with kp = 25 and B2(0) = 6.934 x 10 -s, so that (u 2) = 1. As we have done previ-

ously, an eddy-viscosity subgrid scale model (Kraichnan, 1976; Chollet & Lesieur,

1981) is used to model the unresolved small-scale turbulence. Although the inclu-

sion of a stochastic backscatter term in the subgrid model (Chasnov, 1991) can

directly affect the time-variation of B2, this effect is negligible at the later times of

the turbulence evolution of interest to us here.

The finite resolution of the simulation results in a spherical truncation of the

Fourier series in (7) at kin, the maximum wavenumber of the simulation, so that

the sum to oo in (9) is replaced by a sum to km/V/3. At small times when the

peak of the energy spectrum is near krn, this sharp cutoff results in errors in the

computed value of B2. We have shown that these errors can be easily removed by

applying an additional Ganssian filter of the form exp[(-k/kl) 2] with k I = 12 to

h(k) before computing (9). At the later evolution times of interest to us here, the

effect of this additional filter is negligible.

The results obtained from the simulations are shown in figures 1-3. In figure 1, we

plot the time-evolution of the ensemble-averaged energy spectrum obtained from the

large-eddy simulations by summing the contributions of lu(k)[ 2 into wavenumber

shells of thickness Ak = 1 in the usual way, i.e.,

E(k,t) - 27rk_
Sk E fii(q,t)fii(-q,t),

k-½_<lql<k+½

where Sk is the number of Fourier modes in each wavenumber shell and k =

1.5,2.5,3.5,...,29.5. A good approximation to the homogeneous turbulence en-

ergy spectrum is thus obtained at high wavenumbers, while the approximation is

less accurate at low wavenumbers. Nevertheless, the increase in time of the low

wavenumber k 4 coefficient is clearly evident from the plot.
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FIGURE 2. Time-evolution of the Loitsianski integral.

The coefficient B2(t)/B2(O) versus time, in units of the initial large-eddy turnover

time r(0) where r(0) = 1.38/(k_B2(O)) 1/2, is plotted in figure 2. The points rep-
resent the statistical mean of the ensemble while the pluses represent one standard
deviation from the mean. The standard deviation of the distribution of B2 itself,

which we have shown from the simulation data to be approximately Gaussian, varies

somewhat over the course of the simulation but at the latest time plotted is 80%

of the mean. With 1024 realizations, the statistical uncertainty of the mean at the
latest time is 2.5%.
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FIGURE 3. Time-evolution of the logarithmic derivative of the Loitsianski integral.

In figure 3, we plot the logarithmic derivative of B2 with respect to time in order

to determine the validity of (5) and to compute a value of 7 from the simulation.

In agreement with the EDQNM model, we find that B2(t) follows an approximate

power-law at large times. From figure 3, we estimate the power law exponent to be

3' _ 0.25, with a statistical uncertainty of 6% at the latest time. The straight line

drawn on the log-log plot of figure 2 represents this result. The value of 7 we obtain

from the simulation is about 50% larger thm_ that estimated previously (Lesieur &

Schertzer, 1978; Lesieur, 1990). Using our computed value for 3', the Kolmogorov

decay exponent becomes -1.36 instead of -1.43, a difference of 5%.

The statistical uncertainty of our asymptotic result for 7 can be reduced further

by computing additional realizations. However, there may be other errors in our

result associated with the deviation of "periodic turbulence" from homogeneous

turbulence at the latest times of evolution, as well as the expected slow approach

of the turbulence to asymptotics (Chasnov, 1994). The evident trend of figure 3

is towards a somewhat smaller asymptotic value for 7 than we have estimated. It

would be of interest to repeat the present computation at higher resolution with a

larger ensemble after parallel machines have become substantially more powerful.

We also note here another approach to the current computation. Rather than

simulate 1024 643 turbulent fields, we could have simulated 16 2563 fields with

slightly more computer time due to the need for inter-processor communication. To

obtain similar statistics between these two simulations, we would have to increase

the initial peak of the energy spectrum kp by a factor of four and truncate the

volume integration in (8) to 1/64 the volume of the entire periodic domain. It is
unclear which simulation would result in a more accurate computation of B2(t),

but we chose the former mainly to illustrate the efficiency of performing realization

averages of turbulent flows on parallel machines.
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3. Conclusions

This work has demonstrated the capability of numerical simulations to compute

large-scale statistics of turbulent flows by means of an ensemble average over a large
number of independent realizations of the flow. Such a technique is "embarrassingly

parallel" and is ideally suited for the new parallel computer architectures. This tech-
nique may also be applicable to turbulence simulation on virtual parallel machines

in which many powerful workstations are connected together over a local network.

If the memory of each workstation is sufficiently large so that each realization can

be performed independently on each workstation, then the only communication

required between workstations is to perform the ensemble average.
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of approximating

dissipative nonlinear equations

By Don A. Jones

1. Motivation and objectives

Since one can rarely write down the analytical solutions to nonlinear dissipative

partial differential equations (PDEs), it is important to understand whether, and in

what sense, the behavior of approximating schemes to these equations reflects the

true dynamics of the original equations. Further, because standard error estimates

between approximations of the true solutions coming from spectral methods--finite
difference or finite element schemes, for example--and the exact solutions grow

exponentially in time, this analysis provides little value in understanding the infinite

time behavior of a given approximating scheme.

The notion of the 91obal attractor has been useful in quantifying the infinite time

behavior of dissipative PDEs, such as the Navier-Stokes equations. Loosely speak-

ing, the global attractor is all that remains of a sufficiently large bounded set in

phase space mapped infinitely forward in time under the evolution of the PDE.

Though the attractor has been shown to have some nice properties--it is compact,

connected, and finite dimensional, for exanlple--it is in general quite complicated.

Nevertheless, the global attractor gives a way to understand how the (infinite

time) behavior of approximating schemes such as the ones coming from a finite

difference, finite element, or spectral method relates to that of the original PDE.

Indeed, one can often show that such approximations also have a global attractor.

We therefore only need to understand how the structure of the attractor for the

PDE behaves under approximation. This is by no means a trivial task. Several

interesting results have been obtained in this direction. However, we will not go

into the details. We mention here that approximations generally lose information

about the system no matter how accurate they are. There are examples that show

certain parts of the attractor may be lost by arbitrary small perturbations of the

original equations (see Humphries, Jones, Stuart, 1993, and the references therein

for a description of some of the results).

Under certain hypothesis on the approximation, one can be guaranteed some

structures of the attractor survive the approximation. For example, consider the

ordinary differential equation (ODE)

dx
7

dt x(x), (1)

where we suppose that x E _" and that X is a C 1 function. Further, we suppose

that the system (1) is dissipative and hence has a global attractor. Now suppose

that (1) is approximated by

dy
= X(y) + Y(v), (2)
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where y E _" and Y is a C 1 function. Suppose further that

IIYJlc,-<

for some suitable e > 0. That is, (1) and (2) may be viewed as small C 1 per-

turbations of one another. This seems to be a natural condition to require of a

perturbation in order to say something about how the global attractor of (2) relates

to that of (1). Indeed, such systems have been studied by several authors and in-

creasingly stronger results have been obtained (see e.g. Pliss & Sell, 1992, and the

references therein). It is known, for example, that normally hyperbolic, invariant

manifolds persist under such perturbations.
In order to apply these results to PDEs, one must first construct finite systems

of ODEs that have the same global attractor as the infinite-dimensional PDE. This

has been done for several dissipative PDEs including, for example, the Kuramoto-
Sivashinsky equation, Cahn-Hilliard equation, Ginzburg-Landau, certain reaction-

diffusion equations, and the Navier-Stokes equations, Kwak, 1991. Such systems
are called inertial forms.

To be more specific, each of these PDEs can be viewed as an ordinary differential

equation on a suitably chosen Hilbert space, H. We denote by (., .) the inner product

and ] • [ the norm on H. Then these equations take the form

du

d-"t + Au + R(u) = f (3)

u(O)= no.

Typically, the operator Au is -V 2 with Dirichlet or periodic boundary conditions.

For the Navier-Stokes equations, for example, the term R(u) is the divergence free

part of (u. V)u (see Temam 1988).
In all cases but the Navier-Stokes equations, the existence of inertial forms (IF)

has been proven by showing the existence of an Inertial Manifold. To date, inertial
manifolds have been constructed as a graph in phase space of a Lipschitz function

q_ (see Foias, Sell, Temam, 1988). An inertial manifold (IM) for a dissipative evo-

lution partial differential equation is a smooth finite-dimensional manifold in phase

space, which is positively invariant under the solution operator and which uniformly
attracts every bounded subset of phase space at an exponential rate. It is clear that

if the IM exists, then it must contain the global attractor. Moreover, the reduction

of the partial differential equation to the IM yields the inertial form.

We denote by P the orthogonal projection of the space H onto the span of the

first M eigenfunctions of A, and Q = I - P. We set p = Pu, q = Qu. Then the
evolution equation (3) is equivalent to the system

-" + Ap + PR(p + q) = P f,
dt

dq
d--t+ Aq + QR(p + q) = Qf.
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If the IM is given as a graph of a Lipschitz function • : PH _-* QD(A) for

M sufficiently large, then on this manifold the solutions of (3) are of the form

u(t) = p(t) + ¢(p(t)). Moreover, in this case, the inertial form is given by

r/n
-r + Ap + PR(p + (I,(p)) = Pf p E PH.
dt

(4)

Equation (4) does not have the same solutions as Equation (3) (only on M).

Rather, it has the same infinite time behavior as original PDE. Most importantly,

it is an ODE. In view of the work of Pliss &: Sell (1992) mentioned above, there is

an advantage in approximating (4) in the C 1 sense. A candidate for such a system

is

dp + Ap + PR(p + _app(p)) = Pf P E PH, (5)
dt

with

sup ([A(¢,pp(p)- _(P))I + IIA(D'_app(p)- D'_(P))IIc(PH,QH)) _--E,
pEPH

and where D_ denotes the Fr_chet derivative of the function _. In this case, under

reasonable assumptions on R, the vector field in the approximate inertial form (5)

may be viewed as a small C 1 perturbation of the vector field in the inertial form

(4).

2. Accomplishments

The main goal of this method of reduction is to implement the reduced ordinary

differential system (5) in long-time simulations of solutions to the PDE, (3). Even

in the case that the IM or a smooth function (I) does not exist, the theory suggests

looking for a global function @app whose graph in phase space approximates the

attractor. Indeed, many _app have been constructed. These approximations have

been implemented in numerical schemes for a variety of equations and settings

(see Jones, Margolin, Titi, 1993, and the references therein). We will discuss the
effectiveness of these schemes below.

Perhaps the most important role the IF, Equation (4), can play, as mentioned

above, is to understand how the dynamics of approximating schemes relates to that

of the original PDE. The first attempt at approximating @ in the C 1 sense was

in Jones, Titi, 1993. There, • was viewed as the asymptotically stable stationary

solution of a certain PDE. One can then approximate (I) by integrating this PDE
forward for a short time.

However, the situation may be much simpler than this. Consider the spectral

approximation of (3) based on the eigenfunction of the linear operator A. One

obtains the approximation

du N

d---_ + AUN -F PNR(uN) = PNf (6)
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with initial data BN(O ) = UO,N. As shown in Foias, Sell, Temam, 1988, and Foias,

Sell, Titi, 1988, if N is chosen sufficiently large, there exists a global function
q'N such that MN =Graph(q'N) is an inertial manifold for (6). On this manifold,

solutions axe of the form uN(t) = pN(t)+@N(PN(t)) with pN(t) = PuN(t). Further,

on this manifold, (6) reduces to

dpN
d---_+ ApN + PR(pN + CN(PN(t))) = P f, (7)

where P is defined above. Notice also that Equation (7) remains of dimension M,

the same dimension as (4), as N --_ c¢. Again, it is not that (7) has the same

solutions as (6) (only on MN), but rather it has the same global attractor as (6)
(since the IM contains the attractor).

Now Equation (7) will play the role of the approximate inertial form, Equation

(4). That is, we take Capp = CN. Moreover, it was shown in these two papers that

C

sup IA(q_(p) - 'I'N(p)I _< A,_-----_pEPH

for some 0 < fl < 1/2 which depends on the nonlinear term R. However, more is
true.

Theorem Suppose that M is so large (determined by the spectral properties of A)

that _, q_N as described above exist. Then for all e > 0 there exists a N(e) such that

sup [IA(¢(p) - CN(p))I ÷ IIA(D (p) - O' N(P))ll ¢vn, nj] < e
pEPH

for all N >_ N(e).
Proof. See Jones, Titi (1993).

The IF, Equation (4), has the same dynamics as the original PDE. Moreover,

the above shows that the spectral method based on the eigenfunctions of A is a
small C x perturbation of the IF for N sufficiently large, since Equation (6) and (7)

have the same attractor. Thus, this spectral method preserves certain structures of

the attractor of the PDE, for example, the ones studied in Pliss, Sell, 1991, for N

sufficiently large.
A similar type of analysis may be possible for finite element methods. To do this

properly, we should turn to a specific PDE. However, we will attempt to keep the
exposition as general as possible. We denote by {Vh}h>0 a finite dimensional sub-

space of differentiable functions (most typically piecewise linear functions), where

one can think of h as being the maximum partition size. Then one attempts to
approximate solutions u(t) of (3) by functions uh(t) in V h. The functions u h solve

(uht,)_) + (A1/2uh, A'/2X ") + (R( uh ), )_) = (f, k) (8)

uh(0) = u0h • v h,
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where one can think of A 1/2 as d/dx in the 1D case.

The operator A h can be defined from the equation (Ah_), X) ---- (A1/2_ b, A1/2)_).

Further, projecting R and f onto the space V h, Equation (8) takes the form

duh

d--T + Ahuh + Rh(uh) = fh. (9)

Since A is assumed to be self-adjoint, A h is also. Moreover, the spectrum of A n

can be shown to approximate that of A. Thus, the space V h may be decomposed
V h = phvh @ QhVh. In the same manner that the @N was constructed in Foias,

Sell, Titi, 1988, a global function @h may be constructed for Equation (9) (see Jones,
Stuart, 1993, for the details) such that M h =Graph(_h) is an inertial manifold for

(9). On this manifold, solutions are of the form uh(t) = ph(t) + _h(ph(t)), where

ph = phuh" On the IM, (9) reduces to

dP h Ah ph
d---t+ + phRh(ph "_- _h(ph)) : phf (10)

for h sufficiently small. As in the case of the spectral method, the dynamics of (10)

are the same as that of (9). Moreover, the dimension of (10) remains fixed (roughly

on the order of M) as h ---}0. One would like to show C 1 closeness of (10) and (4).
However, at this point all we have is the following

Theorem For h su_iciently small there exists a function Ch such that (10) holds.
Moreover,

(i) for any p E PH there exists C(p) > 0 such that

II(p+ ¢(p)) - (pap + Ch(php))l I < C(p)h;

(ii) for any ph E Pall there exists C(p h) > 0 such that

ii(pph + ¢(pph)) _ (ph + Ch(ph))ll C(ph)h.

Proof. See Jones, Stuart (1993).

On the Practical Side

The above theory suggests that there may be an advantage in enslaving the high
Fourier modes (in the case of the spectral method based on the eigenfunctions

of A) in terms of the lower modes through the function ¢app. Shortly after the
discovery of the IF, Equation (4), many _app were constructed and studied for

various equations (see Jones, Maxgolin, Titi, 1993, and the references therein),

including the Navier-Stokes equations (see for example Jolly, 1993). Schemes based

on enslaving q _ ff2app(p) axe generally referred to as nonlinear Galerkin methods
since ¢app = 0 gives the standard Galerkin scheme.
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In Jones, Margolin, Titi, 1993, we evaluate the effectiveness of the nonlinear

Galerkin method in the context of spectral method (such schemes have now been
constructed for finite element and finite difference schemes; see the references in

Jones it et al. 1993). The goal of this work is to understand under what conditions
the nonlinear Galerkin methods lead to a significant improvement in accuracy over

the standard Galerkin method from a purely numerical analysis point of view.

Recall that in general, if one approximates a smooth function u with respect

to some basis, the rate of convergence is limited by the smoothness of the basis
functions. If the basis elements are C °o functions as in the case of the eigenfunctions

of the linear operator A, the rate of convergence is only limited by the smoothness

of u and compatibility of the function u with the basis elements of the expansion
at the boundary (the presence of Gibb's phenomenon, for example).

Thus, if the solutions u(t) of equation (3) are very regular and compatible with

the eigenfunctions {_j} of A at the boundary, then the Fourier coefficients of the
solution may decay very rapidly in wave number. Indeed, Foias, Temam, 1989,

showed that, under such circumstances, solutions of the Navier-Stokes equation may

decay exponentially in Fourier space. Similar results hold for the other equations
mentioned above. Thus, the business of trying to approximate the q part of solutions

via the function Oapp may not be effective when the q = Qu part of the solutions

is exponentially small. That is, the approximation Oapp = 0, which leads to the
standard Galerkin scheme, may already be good enough. It turns out that what

controls the regularity and compatibility of solutions coming from the NSE and

related equations is the compatibility with the basis functions and regularity of the

forcing term f.
We demonstrate this for the Kuramoto-Sivashinsky equation (KS). A similar

analysis holds for the NSE. This equation is given by

au 0% a_u au
-_ + _ + _ + u_ : f(x)

u(0, x) = u0(x)

u(t, _) = u(t, x + L) L > 0, t _ 0.

The KS equations appears in physics literature with f = 0. Here we have added an
additional feature to the KS equation, namely, a forcing term f. We will use this

forcing term to control the level of regularity of the solutions to the KS equation.
It is clear that whenever f(x) is an odd function then the space of odd functions is

invariant under the solution operator for the KS equation. For simplicity, we will

restrict ourselves to the odd case. Hence, under these assumptions, one can easily

show that the KS equation is equivalent to the evolution equation

d--t + Au - Al/2u + B(u,u) = f,

u(0)=u0
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on the Hilbert space H = {u E L2((0, L))lu(x) = u(x + L), u(x) = -u(L - x), x E
9 4 ._}. Here A = _-,, the eigenvalues of A are Am = (2_rra/L) 4 corresponding to the

eigenfunctions qom = sin(27rrax/L), for m = 1, 2,....
In either case, one can define the operators A _ for a >_ 0. One defines D(A °) =

{u E H,u -- ,--.,j=l_J"_-u,_,jrj, ,...,j=,_-"_-A2alu_12_,J,< c¢}. Consequently, functions in D(A _)
axe more regular, and more compatible (whenever it applies) with the eigenfunctions

of A at the boundary, for larger a.

We may then approximate solutions of the KS equation with either the standard
Galerkin scheme

dy____+ Ay, + A1/Zyn + P,B(y,,y,) = P,f (11)
dt

or by the nonlinear Galerkin method

dzn

dt
-- + Az,, + Al/2z. + PnB(zn + tapp(z.), z. + ¢apv(z,)) = P,f (12)

for some clever choice for _.,pp.
As mentioned, the rate of convergence of the two schemes is tied to the smoothness

of the solutions and compatibility of the solutions with the basis functions. (Since we

are considering the KS equation with periodic boundary conditions, compatibility
of the solutions is not an issue here. However, such cases are studied in Jones,

Margolin, Titi, 1993.) This is, in turn, tied to the smoothness and compatibility
of the forcing term f. The rates of convergence of the two schemes is given by the

following two theorems which is based on the work of Devulder, Marion, Titi, 1993,

and whose proofs can be found in Jones, Margolin, Titi, 1993.

Theorem Let u(t) = p(t) + q(t) be a solution of the KS equation with uo on the

attractor and f E D(A'_). Suppose y, solves (11) with yn(O) = P,u(O). Then

c,(t)
Ilu(t) - v"(t)llL_ <-- xl+------_"

"n+l

In general, requiring f E D(A c') for some a > 0 requires not only that f be

smooth, but also that f and its derivatives up to order 4a must satisfy the boundary

conditions. Now we suppose that O_pv satisfies certain conditions described in

Jones, Margolin, Titi, 1993--such ¢avp abound. For the nonlinear Galerkin method,
we have

Theorem Let u(t) be a, in the previous theorem. Suppose zn solves (le) with
z,,(O) = Pnu(O). Then

Ilu(t) - (zn(t) + ¢_pp(Z.(t)))l[L2 _ --
c,(t)
,_3+'_ '

n+l
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for Jome _ > 1.

For most @.pp, 3 is not larger than two. Now one can see the issue here. As f
becomes more smooth, larger a, the difference in the theoretical rates of convergence
of the two schemes decreases.

Let us push the smoothness of the solutions to an extreme. Consider the forced

KS equation and suppose that for some a > O, f E D(e °ALl4 ); that is, f is in a

Gevrey class (real analytic). Notice that

oo

aAl/4 t 2 X'" 2aX_/4 ,. 12e .r L2=2_..,e ?i <00,
j=l

where f = _-_0=1 fjcpj. Under these assumptions for the forced KS equation, we
have (Proposition 3.6 of Jones, Margolin, Titi, 1993) that the Fourier expansion

of the solution converges exponentially fast. This means that the solutions are

infinitely compatible with the basis functions at the boundary and analytic inside
the domain. Hence, the high Fourier modes of the solutions have exponentially

small norms, and there may be little advantage in approximating them. Indeed, in

this case, we have

[lu(t) - ym(t)l[L2 < Cl(t) e

where Ym solves the Galerkin scheme (11)
As in the above theorem, we have

,_m+l '

_ ,_1/4
--oi rn+l

Ilu(t) - (zm(t) + ¢.pp(Z,,,(t)))llz= <_ C2(t) e A_+I ,

where zm is the solution of the nonlinear Galerkin scheme (12).

Thus, in the case that the solutions have Gevrey class regularity (spatially real

analytic), the nonlinear Galerkin method only leads to algebraic improvements in
the upper bounds of the rates of convergence over the standard Galerkin scheme.
This little improvement might not be significant in computations. Of course, the

overall improvement depends on how small the constant al is.

We demonstrate this numerically. We choose 4'avp to be

_l(p) = A-'Om(f -- B(p,p)),

which we first studied for the NSE in Foias, Manley, Temam, 1988. For this choice,

fl = 7/4. For our first example, we force the KS equation with

OG

f = E -1 sin(jx).
)=1 3
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Notice that for this choice f E D(A _') for a < 1/8.

We have found a stable periodic orbit with this forcing. Such trajectories are on

the attractor. To obtain the "exact" periodic solution, we run a Galerkin scheme

using 100 modes; when we reach .5 time units, we start recording the data every

.002 time units up to a time of .7 time units (Figure 1). If the initial data is taken

near the periodic orbit, it will take some .4 time units to converge to the periodic

solution. Since the periodic solution is on the attractor, we expect that the rate of

convergence in this case to be of the form

¢1

Eg., = max llu(t) - Y,-,.,(t)IIL, < ,,,---T--
.5<t<.7 - A,-,,+ 1

of course, here we are ignoring errors due to the discretization of time. Also

C2

E1 = max Ilu(t) - + <
.5_<t<.7 - Am+ 1

Since in this case A,. = m 4, we have

log Egal = cl - 4a, log(m + 1),

and

logEl = c2 - 4a2 log(m + 1).

Thus, a log-log plot of the error in terms of the wave number will easily determine

the rate of convergence. In Figure 2, we have plotted the rate of change of the graph

of the log-log plot of the error in terms of wave number. The theory suggests that

the rate of convergence for the Galerkin method al is less than or almost equal to

9/8 and for the nonlinear Galerkin method a2 is less than or almost equal to 15/8.

The results plotted in Figure 2 show that the Galerkin calculation asymptotes at a

value of 1.1, whereas the nonlinear Galerkin asymptotes at a value of 1.92, which is

in a good agreement with the theory.
Now we turn to the case when the force is in the Gevrey class (real analytic).

We consider the KS equation with zero forcing. With the help of the software

package AUTO, we start the calculation with initial data on the unstable manifold

of a periodic orbit, which again is on the attractor. The solution converges to a

steady state as time goes to infinity. Thus, this trajectory is contained in the global

attractor, and the theory presented in Section 3 holds for this trajectory. We first

compute this trajectory using 100 Fourier modes, which we will consider as our
"exact" solution. The L 2 norm of this solution vs. time is shown in Figure 3. We

integrate this trajectory out to 1.3 time units and record the solution every .01 time

units.

We expect from the theory outlined in Section 3 that

_1[4

Cl e -al ^m+l

Sga, := max Ilu(t)- Ym(t)llL, <
O<t<l.3 -- _rn+l
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FIGURE 1. L 2 norm of the solution vs. time for the KS eq. of a Galerkin scheme

with 100 modes forced with f = _'_=J 1/j sin(jx).
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FIGURE 2. Rate of change of the log of the accuracy x 1011 vs. log of the number

of modes. The Galerkin asymptotes at 4.4 and the nonlinear Galerkin at 7.7. The

theory suggests that the Galerkin should asymptote near 4.5 and the nonlinear

Galerkin near 7.5. • , Gelerkin; • , FMT.
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_ Atl 4

El := max Ilu(t)- (Zm(t) + R.Ol(Zm(t)))llL_ <_ cze _' "+'
0<t<1.3 __7/4 '

"'m-]- I

for some al > O. Since Am+l = (m + 1) 4, we have

logEgat = -al(rn + 1) + log(ca A_.I)

and

logE1 = -o'l(rn + 1) + log(c2A_n_ ).

Thus, a log-linear plot of the error versus the number of modes should be nearly

linear. This is confirmed in Figure 4. In fact, the two lines are parallel. That is,

they have the same exponential rate of convergence (same al ). In addition, notice

that the nonlinear Galerkin method still exhibits an algebraic improvement over the

standard Galerkin. This is manifested by the fact that the graph for the nonlinear

Galerkin is below the graph for the Galerkin.

Similar considerations apply where the compatibility of the solutions with the

basis functions is an issue. Let us recall how this can come about. Consider Burgers'

equation forced on the boundary

Ou 02u Ou

Ot Ox 2 + u-_x= O, (13)

,,(0, t) = 1 u(a, t) = 0.

To formulate this problem in the same setting as Equation (3), one can set v =

u - (1 - x) to obtain

OU 02U

cot Ox 2

Ov Ov

+ ,,_ + (1 - x)N----v----l--x,

o(o,t) = o ,(1,,) = o.

To apply the nonlinear Galerkin method, we must first expand the forcing term,

here f = 1 - x, in terms of the eigenfunctions of the linear dissipative operator

_oj(x) = sin(jTrx). We find

oo

/= 1- x = Z _ sin(jTrx).
j=l

It is easily seen that, in terms of the spectral method based on the eigenfunctions

of the Laplacian, the forcing term is only L2((0, 1)), (_ = 0). We therefore expect

the nonlinear Galerkin method to be significantly more accurate in this case.
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FIGURE 3. L 2 norm of "exact" solution vs. time for the KS equation with zero

forcing with initial data on an unstable manifold.
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with zero forcing. Notice that the rate of convergence of both schemes is exponential.
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3. Future plans

The goal remains _o understand what aspects of the long time behavior of infinite-

dimensional PDEs are retained by their finite-dimensional approximations. Perhaps

the ultimate test of an approximation will remain how well it predicts nature. How-

ever, there are a growing number of applications where one does not know a priori

nor is there a way to test experimentally the behavior of some systems. Therefore,

assuming the dynamics of the PDEs accurately reflects the physical phenomenon it

is meant to depict, we hope understanding the behavior of approximating schemes

of these PDEs will prove valuable in the future.
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Tensoral for post-processing
users and simulation authors

By Eliot Dresselhaus

The CTR post-processing effort aims to make turbulence simulations and data

more readily and usefully available to the research and industrial communities. The

Tensoral language -- which provides the foundation for this effort -- is introduced

here in the form of a user's guide. The TensorM user's guide is presented in two

main sections. Section 1 acts as a general introduction and guides database users

who wish to post-process simulation databases. Section 2 gives a brief description of

how database authors and other advanced users can make simulation codes and/or

the databases they generate available to the user community via TensorM database

backends.

The two-part structure of this document conforms to the two-level design struc-

ture of the TensorM language. Tensoral has been designed to be a general computer

language for performing tensor calculus and statistics on numerical data. Ten-

sorM's generality allows it to be used for stand-alone native coding of high-level

post-processing tasks (as described in section 1 of this guide). At the same time,

TensorM's specialization to a minute task (namely, to numerical tensor calculus

and statistics) allows it to be easily embedded into applications written partly in

TensorM and partly in other computer languages (here, C and VectorM). Embed-

ded Tensoral -- aimed at advanced users for more general coding (e.g. of efficient

simulations, for interfacing with pre-existing software, for visualization, etc.) -- is

described in section 2 of this guide.

1. Tensoral user's guide

Overview

The post-processing problem entails computing quantities derived from given

base quantities such as a velocity vector field ff(:?,t), a scalar field ¢(:?, t), or a

vorticity field aT(_, t). (Which base quantities are present will vary from database

to database.) Derived quantities are typically those commonly arising in theories of

fluid mechanics, turbulence, and in practical problems; all of these quantities involve

performing calculus and statistics on numerically represented tensor quantities.

A Tensoral post-processor canonically starts with one or more given fields (e.g.

ff(_,t)) and computes one or more derived quantities and outputs the results of

these computations in some form. For example, given a velocity field one may wish

to calculate pressure, strain, vorticity, strain times vorticity, mean and mean square

velocity, skin friction, etc.
TensorM presents users with two main abstractions: tensors and operators, which

we presently introduce. All quantities in Tensoral (whether base or derived) are
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represented as tensors. Tensoral tensors correspond loosely to mathematical ten-

sor fields. This correspondence is loose in that Tensoral tensors are not defined

by how they transform under coordinate change. Instead, Tensoral tensors are

"computational" tensors: that is, they are indexed numerical arrays (for example,
a_ij (x,y,z)) -- with one set of tensor indices (ij) and one set of coordinate in-

dices (xyz). Tensoral tensors have rank and dimension which respectively define
the number and range of tensor indices; a_±j is a rank 2 tensor and indices i and

j take integral values from 1 to d, the dimension of a. Coordinate indices describe

which coordinates (if any) a tensor depends on. Normally, coordinate indices are

transparent to post-processing users -- operations on tensors always apply to the

entire array. Adding two tensors, for example, adds array values at corresponding
spatial points and for corresponding tensor indices. Explicit coordinate values are

also available via projection (introduced below).

Tensoral tensors axe modified and combined with operators. Standard Tensora/

operators include tensor assignment (--), algebraic operations (addition, subtraction,

multiplication, division, exponentiation), differentiation, integration, averaging, and
projection. Such operators are built into Tensora/syntax and are hence "standard."

Tensor rank and coordinate dependencies are appropriately updated when variables
are assigned, algebraically combined, differentiated, averaged, or indices contracted

(dot product). Thus, performing a derivative increases rank by one, averaging
removes coordinate dependencies, etc.

User defined operators can be provided at will by database authors. Useful ex-

amples of such operators include reading and writing databases, output of tensors

for visualization or graphing, etc. Tensora/provides an extremely flexible mecha-

nism for such operators to be added by database authors. However, available user
defined operators must be documented by a database author for users to be able to
effectively use them.

It should be mentioned here that Tensora/tensors and operators are abstract

notions. How an abstract tensor is represented numerically (e.g. as an array in

memory, across processors in a multi-computer, split between memory and disk,
etc.) and how operators operate (e.g. derivatives as finite differences or as multipli-
cation in wave space, etc.) is completely determined by a database backend. Such

backends (described in section 2 of this guide) are provided by simulation authors

and give all of the information necessary to convert Tensora/post-processors into

an executable computer program to perform the intended computation and output
the result.

Mathematical syntax

Mathematical notation in TensorM is a super-set of VectorM notation and as with

Vectoral aims to present a syntax as close as possible to standard mathematical

notation. Thus, given tensors a and b, a+b, a-b, a.b, a.b, a/b, a'b and lal

represent point-wise addition, subtraction, cross product, dot product, division,
exponentiation and absolute value (for scalars), respectively. Juxtaposition a b can

also be used for outer (tensor) product (but only if a and b are within parenthesis or
are not within parentheses but are on the same input line). Floating point constants
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(which are tensors of rank 0 with no coordinate dependencies) are entered as in
Vectoral: as sequences of base ten digits and optional decimal point, followed with

an optional e or E for exponent and optional i or I for the imaginary unit (V/-2-1).

Any balanced parenthesis ((), {} or []) may be used for grouping mathematical

expressions.

Tensor notation

In addition Tensoral supports tensor notation as follows. Tensor indices are in-

troduced by the underscore character _ and followed by arbitrary mixtures of single

digits or single letter coordinate directions (for indices with explicit values - e.g.
a_12 = a_xy), or single letters which are not coordinates (for dummy indices - e.g.

a_ij ). No spaces are allowed before or after indices or the leading _. Indices whether

explicit or dummy must be single letters or digits. One should think of Tensora/in-

dexed expressions as atomic variable references which -- as in most other computer

languages -- contain no white space.
Any tensor index which is not a number or a coordinate direction (as defined

in a particular simulation backend) is assumed to be a dummy index. Dummy
indices label how tensor indices are to be combined in an expression -- for example,

distinguishing the statements a_ij " b_j c_i and a_ij = b_i c_j. Dummy indices
are also often used in conjunction with the summation convention: namely, that

repeated dummy indices in a product are summed over. Use of the summation
convention in indexed products is controlled by whether * or . or juxtaposition is
used for multiplication. Products involving pure juxtaposition imply the summation

convention; otherwise, summation is not implied. TensoraI provides the standard

symbols _ij (totally symmetric) and eijk (totally anti-symmetric) as delta and

epsilon. Here are some illustrative examples of tensor index notation:

c_k ffi epsilon_ijk a_i b_j cross product of rank 1 a, b.
c = a_i b_i dot product of rank 1 a, b.

c_ik = a_ij b_jk matrix multiplication of rank 2 a, b.

Tensor expressions need not have explicit indices. If indices are missing Tensoral
deduces the tensor rank (either from the tensor assigned to the given expression

or zero if there is no such tensor) and inserts dummy indices in missing slots from

left to right. Summation over repeated dummy indices is implied for index-free
expressions, independent of which form of multiplication is used. Also, for index-

free expressions the multiplication operators * and . generate dummy indices for
cross and dot products, respectively. Using index free notation, the above examples

are coded as follows:

c ffi a * b cross product.

c ffi a . b dot product.
c = a b matrix multiplication.

Coordinate indexing: projection

Indexing (also referred to as projection) is also supported for spatial coordinates,
but with a different notation than for tensor indexing. A tensor u depending on
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coordinates xyz can be evaluated at particular x, y or z values for x = 17 planes

as u(17,y,z), for x = 17, z = 19 pencils as u(17,y,19), or at a single point

x = V = z = 0 as u(0,0,0). All coordinate names in TensorM are single characters,

whose definition, semantics, and values are determined by database backends.

Tensoral coordinates are not required to be the native coordinates of a simulation.

A database author can provide various coordinate systems for a single simulation

as appropriate and physically meaningful. Typical coordinates for Rogallo's wave

space isotropic turbulence simulation would include, for example:

x y z standard Cartesian coordinates,

X Y Z Cartesian wave space,

r the radial coordinate r 2 = x 2 + y2 + z 2,

k the wave vector magnitude k 2 = X 2 + y2 + Z 2.

Tensoral operators

Mathematical functions (e.g. sine, cosine, log, exponential), differentiation, la-

place and curl operator inversion, among others) all appear in Tensoral as operators.

Operators in Tensoral act from the left and apply to a given number of tensors or

tensor expressions on the right. Operator arguments are flanked by parentheses (one
of (), {} or []) and separated by commas as in standard mathematical notation.

(Additional operator notation is provided at statement level and will be discussed

below.) If an operator takes a single operand (for example, square root), these

parenthesis may be omitted so long as the argument is a tensor. Thus, sqrt z is
permissible in place of sqrt (z).

Operators are either built into Tensora/or are defined by database authors' back-

ends. Since they must be specially defined by backends or are built into Tensora/,

operators can be recognized as syntactically differentiated from tensors, making it

possible to differentiate tensor projection (e.g. a(0,0,0) for tensor a) from operator
notation (e.g. f(0,0,0) for operator f).

The standard mathematical functions in Tensoral are as in Vectora] and are listed

in the following table:

conj Z

exp x, log x, logl0 x

sqrt x

sin x, cos x, tan x

arcsin x, arccos x

arct an x

Complex conjugate

Exponential, log, log base 10.

Square root

Trigonometric functions.

Trigonometric inverse functions.

Like tensors, operators can also have rank and be indexed (like any other tensor).

In particular, differentiation (dill or grad), integration (±nt), averaging (ave),
minimum (rain), and maximum (max) are all indexed operators in TensorM.

Differentiation has rank one and can be explicitly indexed (e.g. diff_y u_x for
Oyu,) or can be index free:

w = grad * u encodes the curl of u;

divu ffi grad u encodes its divergence.
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In addition, a special indexed shorthand is available for derivatives: any dummy

indices following a comma are taken as derivatives. Thus, u_±,j is shorthand for

diff_j u_i, and v,ii generates a Laplacian V2v.
The remainder of the indexed operators listed above are special in that they do not

have fixed rank. Consider ave as a typical example, ave_x performs an average over

the x coordinate direction (as defined by the database backend); ave_xy performs

averaging over both x and y coordinate directions. The remainder of the average-like

operators (int, ,.in, max) behave in a similar fashion: operator indices determine
which coordinates are to be integrated and minimized or maximized over.

Tensoral _tatements

There are only two forms of statement in Tensoral: assignments and statement-

level operator expressions. Assignments can use multiple left-hand sides as long as

they are tensors and multiple assignments may be performed in parallel as in Vec-

toral with the _ character joining the multiple assignments. In parallel assignment,

right hand sides of all _-linked assignments are evaluated be[ore any assignments
are performed, so that the statement a .. b & b ffi a, for example, swaps tensors a

and b.
Statement-level operator expressions may optionally use a special operator syn-

tax, different from standard functional notation (e.g. ¢(a,b,c)). At statement-
level operator expressions may be written without parenthesis. If all arguments are

tensors (either indexed or index-free) an operator expression maybe written with-
out commas. In either case, the final argument is terminated by a newline, which

replaces the closing parenthesis of functional notation. The following are valid ex-

amples of statement-level operators f and g: g a+b, a-b and f a b. (Of course,
both of these examples must be terminated with a new line.)

Example and usage

Here we illustrate what has just been presented and give a complete example of

how Tensora/can be used to perform a simple post-processing task. Suppose --
for the sake of example -- one wants to study vorticity generation in an evolving

incompressible boundary layer (evolving along the x direction). A simple question
to ask would be "what does the plane-averaged vortex stretching term look like as

a function of x?" Suppose further that one desires to measure this stretching in an

exponential sense, i.e. to calculate d/dtlog(J 2) = J.S_/w2, and average it along

yz directions. One would code the following Tensora/program into a file test on

the computer disk:

s_ij -- 1/2 (u_i,j ÷ u_j,i)
u_k = 1/2 epsilon_ijk (u_i,j - u_j,i)

print ave_yz (w . $ w / w . -)

To execute the Tensoral program test on simulation restart file run1, one would

execute a command (for example, to a Unix shell program) tl test runl and the
entire x direction of mean exponential vorticity production should be output on the

computer console. (Details, of course have been omitted here: in particular, runl
must be associated with some author-contributed Tensoral database backend.)
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2. Tensoral author's guide

This author's guide seeks to introduce simulation and database authors to how the

Tensoral compiler operates and to how database backends interact with and control

this operation. Thus, we give here a general introduction to the inner workings of

the Tensora/compiler and follow it with a brief description of the tools with which
backends are coded.

The Tensoral system compiles high-level tensor expressions and statements --

either in the form of a native post-processor (as described in the above user's guide)

or as embedded within a lower-level host computer language -- into host language

code which numerically realizes these tensor operations. The lower-level language

program output by a Tensoral compilation is itself compiled by another (e.g. C
or Vectoral) compiler into an executable computer program. Tensoral has been

designed to be easily adapted to generate any sufficiently powerful host language.

Thus, the prototype system currently under development has separate versions for
C and Vectoral as host languages.

By compiling tensor operations into a host language, Tensoral can be simulta-

neously general and efficient. Also, this design allows for Tensoral to be flexibly

embedded within non-tensor specific host language code. In this way TensoraI

specializes in numerical tensor computations and leaves other language features

(input/output, file handling, graphics calls, etc.) to the host language.

The process of converting TensoraJ into host code is mediated by the Tensoral

compiler and is controlled by database backends. The Tensoral compiler presents
backends with several constructs for describing exactly how abstract Tensoral ten-

sors and the operators which combine them are realized in host code. In particular,

the compiler presents database authors with mechanisms for host-coding both tensor

and coordinate indices, for host-coding operators and how they combine tensors in

mathematically meaningful ways, and for host-coding loops to iterate over tensors'
coordinates.

The backend constructs for looping, operators, and tensor indexing are given using

a parenthesized Lisp-like notation: Tensoral employs the Scheme dialect of Lisp for
both its internal coding and as an extension language. Host code is specified within

Scheme in the form of a simple template language. Templates are fragments of host

code which can refer to other templates or arbitrary Scheme code, can have other

templates substituted in them, and can be split and subsequently inserted onto the

loops which iterate over tensor's dependent coordinates. The details and syntax

for templates, as well as for the backend looping, indexing, and operator constructs

just mentioned, will be touched upon in the following and detailed elsewhere.

How Tensoral "works

How then is a Tensoral program compiled into host language code? Tensors in

Tensoral must somehow correspond to numeric arrays. Hence, operations involving
tensors must correspond to host code which iterates numerical operations over the
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elements of these arrays. The first step in generating host code must then involve

specifying how Tensora/tensors and expressions are to be iterated over.

The Tensoral compiler represents this iteration with a scaffolding of nested host

language loops -- for loops in C or Vectoral; do loops in Fortran. Looping con-

structs are defined by simulation authors' backends with the loop function and are

meant to be flexible and general so as to support various data management strate-

gies such as splitting data into one dimensional pencils, two dimensional planes,

groups of planes, or splitting data across processors of a multi-computer (such as

the Intel Hypercube or Paragon systems).

The ordering and nesting of these loops is dynamic and under the control of

either the database backend or the Tensorad program (or both). Loop nests are

determined and changed either implicitly through the Tensoral operators present in

an expression (the typical case for native Tensoral post-processors) or explicitly in

Tensored code (the typical case for embedded TensoraJ).

Once the loop scaffolding has been erected, host code templates for tensor op-

erations and expressions can be built around and inside it. Tensora/statements

are first parsed by the compiler into Scheme code. Parsing involves mapping Ten-

sofa/operator notation (for example, f(a,b,c) mad a = b.c) to corresponding

Scheme function calls ((f a b c) and (= a (* b c)))for appropriately defined

or re-defined Scheme functions (f, _, and *). This Scheme code, which only involves

function calls and tensor references, is then recursively evaluated by the Scheme in-

terpreter. The results of evaluating Tensoral operators at each recursion level are a

template representing the operator applied to its operands in host code and a repre-

sentation of which coordinates this expression depends on. Both of these evaluation

results come in the form of Scheme strings.

When tensors axe encountered while evaluating Tensora/expressions, special tem-

plates are used to generate host code for them. These special templates are given by

backends and completely implement how tensor and coordinate indexing behaves.

Coordinate dependency information, built into to how tensors are internally repre-

sented by the Tensoral compiler, determines how this indexing is to be performed.

Tensor indexing templates axe generally the most complex in a database backend

since they almost completely implement how tensors are represented numerically.

Template and coordinate dependency information are returned as results of this

evaluation.

The evaluation of Tensoral operator expressions also involves generating both a

template and corresponding coordinate dependency information. Operator evalua-

tion begins by recursively evaluating the operator's operands giving the operands

templates and coordinate dependencies. All Tensora/operators have templates as-
sociated with them. These templates are either built into Tensoral or are given

by database backends via the operator command. In either case, these opera-

tor templates specify where and how operand templates are to be placed within

them. In this way, expression templates are formed. All Tensora/operators also

have coordinate dependency information which specify how they combine the coor-

dinate dependencies of their operands. Thus, evaluation results in a template and
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coordinate dependencies.

After expression and tensor operands have been substituted, host code is gener-
ated from templates by "cut and paste." Substituted templates -- whether eval-

uated from statement level or nested within an expression -- are split (the "cut"

operation) at points specified in the template and the pieces of the split template

("sub-templates") are inserted (the "paste" operation) onto the loop nest according
to the nesting levels specified along with these split points. The sub-template after

the final split point of a template (or the entire template if no split point is present)
is taken as the va/ue of the template. Template values represent host code for the

value of a template. For nested expressions, template values are inserted into the

expression which recursively contains them (e.g. the * template value in (ffi a (*

b c))); template values at the statement-level (e.g. ffivalue in (ffi a (* b c))) are

inserted into the loop nest according to the statement-level coordinate dependency
information generated in the evaluation process.

Once all tensor expressions have been evaluated and all templates generated and

spht, the loop nest contains only host language strings and Scheme code. Any

Scheme code on the loop nest needs to be further evaluated and will, presumably,
generate more templates and/or Scheme code. The evaluation process just outlined

is repeated until no more Scheme code remains on the loop nest and the entire loop

nest may be output as host code. Initially host and Scheme code exist on a single
loop nest; however, as further Scheme code is evaluated, further structure may be
added under the direction of this the Scheme code. One of the most important uses

of Scheme code within templates is to structure loop nests as appropriate to a given
computation.

3. Current status and future direction

At present a prototype of a pre-Tensoral language -- a lower-level language than

Tensoral as described here -- has been completed and is operational. This language

generates Vectoral post-processors given pre- TensorM code and includes many of the

backend concepts described here. However, this pre-TensorM language is missing
many of the features and even some of the general concepts described in this doc-

ument. The full TensorM language described here is currently under development
and will hopefully be completed in a matter of months.

As for the future, I hope to have a prototype TensorM system functional for

the next CTR summer program. Use of Tensoral in a summer program should
provide significant experience towards how to use TensorM effectively and how to

refine its design to increase its utility. For the near future, my goal is to have

Rogallo's isotropic turbulence simulation and database post-processing coded purely
in TensorM.
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